Biocompatibility of Fe3O4@Au composite magnetic nanoparticles in vitro and in vivo

被引:88
|
作者
Li, Yuntao [1 ,2 ]
Liu, Jing [1 ]
Zhong, Yuejiao [3 ,4 ]
Zhang, Jia [1 ]
Wang, Ziyu [1 ]
Wang, Li [1 ]
An, Yanli [1 ]
Lin, Mei [1 ]
Gao, Zhiqiang [2 ]
Zhang, Dongsheng [1 ]
机构
[1] Southeast Univ, Sch Med, Nanjing 210009, Jiangsu Provinc, Peoples R China
[2] Nanjing Med Univ, Affiliated Hosp 2, Nanjing, Jiangsu Provinc, Peoples R China
[3] Jiangsu Canc Hosp, Nanjing, Jiangsu Provinc, Peoples R China
[4] Jiangsu Inst Canc Res, Nanjing, Jiangsu Provinc, Peoples R China
来源
INTERNATIONAL JOURNAL OF NANOMEDICINE | 2011年 / 6卷
关键词
toxicity; hyperthermia; core-shell; IRON-OXIDE NANOPARTICLES; FE3O4; NANOPARTICLES; GOLD NANOPARTICLES; CYTOTOXICITY; PARTICLES; TISSUE; TUMORS; CELLS;
D O I
10.2147/IJN.S24596
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Purpose: This research was conducted to assess the biocompatibility of the core-shell Fe3O4@ Au composite magnetic nanoparticles (MNPs), which have potential application in tumor hyperthermia. Methods: Fe3O4@Au composite MNPs with core-shell structure were synthesized by reduction of Au3+ in the presence of Fe3O4-MNPs prepared by improved co-precipitation. Cytotoxicity assay, hemolysis test, micronucleus (MN) assay, and detection of acute toxicity in mice and beagle dogs were then carried out. Results: The result of cytotoxicity assay showed that the toxicity grade of this material on mouse fibroblast cell line (L-929) was classified as grade 1, which belongs to no cytotoxicity. Hemolysis rates showed 0.278%, 0.232%, and 0.197%, far less than 5%, after treatment with different concentrations of Fe3O4@Au composite MNPs. In the MN assay, there was no significant difference in MN formation rates between the experimental groups and negative control (P > 0.05), but there was a significant difference between the experimental groups and the positive control (P < 0.05). The median lethal dose of the Fe3O4@Au composite MNPs after intraperitoneal administration in mice was 8.39 g/kg, and the 95% confidence interval was 6.58-10.72 g/kg, suggesting that these nanoparticles have a wide safety margin. Acute toxicity testing in beagle dogs also showed no significant difference in body weight between the treatment groups at 1, 2, 3, and 4 weeks after liver injection and no behavioral changes. Furthermore, blood parameters, autopsy, and histopathological studies in the experimental group showed no significant difference compared with the control group. Conclusion: The results indicate that Fe3O4@Au composite MNPs appear to be highly biocompatible and safe nanoparticles that are suitable for further application in tumor hyperthermia.
引用
收藏
页码:2805 / 2819
页数:15
相关论文
共 50 条
  • [41] Immunoassay by Hydride Generation-Atomic Fluorescence Spectrometer Using Arsenic Absorbed Fe3O4@Au Nanoparticles as Label
    Jin, Hai-juan
    Hou, Jian-Guo
    Li, Tian-hua
    Gan, Ning
    2010 3RD INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2010), VOLS 1-7, 2010, : 1507 - 1510
  • [42] Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells
    Ankamwar, B.
    Lai, T. C.
    Huang, J. H.
    Liu, R. S.
    Hsiao, M.
    Chen, C. H.
    Hwu, Y. K.
    NANOTECHNOLOGY, 2010, 21 (07)
  • [43] Multi-functional core-shell Fe3O4@Au nanoparticles for cancer diagnosis and therapy
    Rajkumar, S.
    Prabaharan, M.
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2019, 174 : 252 - 259
  • [44] Eryptosis Indices as a Novel Predictive Parameter for Biocompatibility of Fe3O4 Magnetic Nanoparticles on Erythrocytes
    Ran, Qian
    Xiang, Yang
    Liu, Yao
    Xiang, Lixin
    Li, Fengjie
    Deng, Xiaojun
    Xiao, Yanni
    Chen, Li
    Chen, Lili
    Li, Zhongjun
    SCIENTIFIC REPORTS, 2015, 5
  • [45] Magnetic and inductive heating properties of Fe3O4/polyethylene glycol composite nanoparticles with core-shell structure
    Zhao, Dong-Lin
    Teng, Pan
    Xu, Ying
    Xia, Qi-Sheng
    Tang, Jin-Tian
    JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 502 (02) : 392 - 395
  • [46] The biocompatibility study of Fe3O4 magnetic nanoparticles used in tumor hyperthermia
    Zhang, Dongsheng
    Du, Yiqun
    2006 1ST IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS, VOLS 1-3, 2006, : 339 - 342
  • [47] SURFACE MODIFICATION AND CHARACTERIZATION OF Fe3O4/Au COMPOSITE NANOPARTICLES
    Shi, Feng
    Hui, Wenli
    Cui, Yali
    Chen, Chao
    NANO, 2011, 6 (02) : 145 - 151
  • [48] Surface modification and characterization of Fe3O4/Au composite nanoparticles
    Shi, Feng
    Hui, Wenli
    Chen, Chao
    Cui, Yali
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2011, 13 (1-2): : 141 - 145
  • [49] Synthesis of composite magnetic nanoparticles Fe3O4 with alendronate for osteoporosis treatment
    Lee, Ming-Song
    Su, Chao-Ming
    Yeh, Jih-Chao
    Wu, Pei-Ru
    Tsai, Tien-Yao
    Lou, Shyh-Liang
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2016, 11 : 4583 - 4594
  • [50] In vivo evaluation of Fe3O4 nanoparticles
    Popescu, Roxana Cristina
    Andronescu, Ecaterina
    Grumezescu, Alexandru Mihai
    ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY, 2014, 55 (03) : 1013 - 1018