An expectation value expansion of Hermitian operators in a discrete Hilbert space

被引:10
作者
Asplund, R [1 ]
Björk, G [1 ]
Bourennane, M [1 ]
机构
[1] Royal Inst Technol, Dept Elect, SE-16440 Kista, Sweden
关键词
quantum cryptography; Hermitian operators; state reconstruction; Breidbart basis;
D O I
10.1088/1464-4266/3/3/314
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss a real-valued expansion of any Hermitian operator defined in a Hilbert space of finite dimension N, where N is a prime number, or an integer power of a prime. The expansion has a direct interpretation in terms of the operator expectation values for a set of complementary bases. The expansion can be said to be the complement of the discrete Wigner function. We expect the expansion to be of use in quantum information applications since qubits typically are represented by a discrete, and finite-dimensional, physical system of dimension N = 2(p), where p is the number of qubits involved. As a particular example we use the expansion to prove that an intermediate measurement basis (a Breidbart basis) cannot be found if the Hilbert space dimension is three or four.
引用
收藏
页码:163 / 170
页数:8
相关论文
共 44 条
[1]   Reconstructing the density matrix of a spin s through Stern-Gerlach measurements:: II [J].
Amiet, JP ;
Weigert, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (25) :L269-L274
[2]   Reconstructing a pure state of a spin s through three Stern-Gerlach measurements [J].
Amiet, JP ;
Weigert, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (15) :2777-2784
[3]  
ASPLUND R, 2001, IN PRESS PHYS REV A
[4]   Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography [J].
Bechmann-Pasquinucci, H ;
Gisin, N .
PHYSICAL REVIEW A, 1999, 59 (06) :4238-4248
[5]   Quantum cryptography using larger alphabets [J].
Bechmann-Pasquinucci, H ;
Tittel, W .
PHYSICAL REVIEW A, 2000, 61 (06) :6
[6]   Quantum cryptography with 3-state systems [J].
Bechmann-Pasquinucci, H ;
Peres, A .
PHYSICAL REVIEW LETTERS, 2000, 85 (15) :3313-3316
[7]  
Bennett C. H., 1992, Journal of Cryptology, V5, P3, DOI 10.1007/BF00191318
[8]  
Bennett C. H., 1984, PROC IEEE INT C COMP, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[9]  
BOURENANNE M, 2001, IN PRESS PHYS REV A
[10]   Observation of three-photon Greenberger-Horne-Zeilinger entanglement [J].
Bouwmeester, D ;
Pan, JW ;
Daniell, M ;
Weinfurter, H ;
Zeilinger, A .
PHYSICAL REVIEW LETTERS, 1999, 82 (07) :1345-1349