Triple systems not containing a fano configuration

被引:57
作者
Füredi, Z
Simonovits, M
机构
[1] Hungarian Acad Sci, Renyi Inst Math, H-1364 Budapest, Hungary
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
D O I
10.1017/S0963548305006784
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A Fano configuration is the hypergraph of 7 vertices and 7 triplets defined by the points and lines of the finite projective plane of order 2. Proving a conjecture of T Sos, the largest triple system on n vertices containing no Fano configuration is determined (for n > n(1)). It is 2-chromatic with ((3) (n)) - ((3) ([n/2])) - (([n/2)(3)]) triples. This is one of the very few nontrivial exact results for hypergraph extremal problems.
引用
收藏
页码:467 / 484
页数:18
相关论文
共 19 条
[1]  
Andrasfai B., 1974, Discrete Mathematics, V8, P205, DOI 10.1016/0012-365X(74)90133-2
[2]  
Bollobas B., 1978, EXTREMAL GRAPH THEOR
[3]  
Bondy JA, 1997, J GRAPH THEOR, V25, P267, DOI 10.1002/(SICI)1097-0118(199708)25:4<267::AID-JGT4>3.0.CO
[4]  
2-I
[5]  
Brown Wendy, 2002, POLITICS OUT HIST, P1
[6]   An upper bound for the Turan number t3(n, 4) [J].
Chung, F ;
Lu, LY .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1999, 87 (02) :381-389
[7]   The maximum size of 3-uniform hypergraphs not containing a Fano plane [J].
De Caen, D ;
Füredi, Z .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 78 (02) :274-276
[8]  
Erdos P., 1973, Discrete Mathematics, V5, P323, DOI 10.1016/0012-365X(73)90126-X
[9]   ON EXTREMAL PROBLEMS OF GRAPHS AND GENERALIZED GRAPHS [J].
ERDOS, P .
ISRAEL JOURNAL OF MATHEMATICS, 1964, 2 (03) :183-&
[10]   ON THE COMBINATORIAL PROBLEMS WHICH I WOULD MOST LIKE TO SEE SOLVED [J].
ERDOS, P .
COMBINATORICA, 1981, 1 (01) :25-42