On Wishart distribution: Some extensions

被引:27
作者
Diaz-Garcia, Jose A. [1 ]
Gutierrez-Jaimez, Ramon [2 ]
机构
[1] Univ Autonoma Agr Antonio Narro, Dept Stat & Computat, Saltillo 25315, Coahuila, Mexico
[2] Univ Granada, Dept Stat & OR, E-18071 Granada, Spain
关键词
Jacobians; Spherical functions; Generalised hypergeometric functions; Nonsingular Wishart distribution; Noncentral distributions; Real; complex; quaternion and octonion; random matrices; MATRIX ARGUMENT; ZONAL-POLYNOMIALS; LATENT ROOTS;
D O I
10.1016/j.laa.2011.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes a unified approach that enables the Wishart distribution to be studied simultaneously in the real, complex, quaternion and octonion cases under elliptical models. In particular, the matrix multivariate elliptical distribution, the noncentral generalised Wishart distribution, the joint density of the eigenvalues and the distribution of the maximum eigenvalue are obtained for real normed division algebras. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1296 / 1310
页数:15
相关论文
共 29 条
[1]  
[Anonymous], 1990, GEN MULTIVARIATE ANA
[2]  
[Anonymous], LOG GASES R IN PRESS
[3]  
[Anonymous], 1993, Elliptically Contoured Models in Statistics
[4]  
Baez JC, 2002, B AM MATH SOC, V39, P145
[5]  
Bravais A., 1846, Mem. de l'Instit. de France, V9, P255, DOI [DOI 10.1007/S11135-006-9066-Y, 10.1007/s11135-006-9066-y]
[6]  
CHIKUSE Y, 1979, ANN I STAT MATH A, V31, P465
[7]   ASYMPTOTIC EXPANSIONS FOR DISTRIBUTIONS OF LATENT ROOTS IN MULTIVARIATE-ANALYSIS [J].
CONSTANTINE, AG ;
MUIRHEAD, RJ .
JOURNAL OF MULTIVARIATE ANALYSIS, 1976, 6 (03) :369-391
[8]  
Davis AW., 1980, MULTIVARIATE ANAL, P287
[9]   Singular random matrix decompositions:: distributions [J].
Díaz-García, JA ;
González-Farías, G .
JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 94 (01) :109-122
[10]   Wishart and Pseudo-Wishart distributions under elliptical laws and related distributions in the shape theory context [J].
Diaz-Garcia, Jose A. ;
Gutierrez Jaimez, Ramon .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (12) :4176-4193