Adaptive heterogeneous multiscale methods for immiscible two-phase flow in porous media

被引:11
作者
Henning, Patrick [1 ]
Ohlberger, Mario [1 ]
Schweizer, Ben [2 ]
机构
[1] Univ Munster, Inst Numer & Angew Math, D-48149 Munster, Germany
[2] Tech Univ Dortmund, Fak Math, D-44227 Dortmund, Germany
关键词
Adaptivity; HMM; Multiscale problem; Two-phase flow; Porous media; FINITE-ELEMENT-METHOD; ELLIPTIC PROBLEMS; VOLUME METHOD; NUMERICAL HOMOGENIZATION; ANALYTICAL FRAMEWORK; DISCRETIZATIONS; SIMULATION; REGULARITY; EXISTENCE; POROSITY;
D O I
10.1007/s10596-014-9455-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this contribution, we present the first formulation of a heterogeneous multiscale method for an incompressible immiscible two-phase flow system with degenerate permeabilities. The method is in a general formulation, which includes oversampling. We do not specify the discretization of the derived macroscopic equation, but we give two examples of possible realizations, suggesting a finite element solver for the fine scale and a vertex-centered finite volume method for the effective coarse scale equations. Assuming periodicity, we show that the method is equivalent to a discretization of the homogenized equation. We provide an a posteriori estimate for the error between the homogenized solutions of the pressure and saturation equations and the corresponding HMM approximations. The error estimate is based on the results recently achieved as reported by CancSs et al. (Math. Comp. 83(285):153-188, 2014). An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow.
引用
收藏
页码:99 / 114
页数:16
相关论文
共 55 条
[1]   An adaptive multiscale method for simulation of fluid flow in heterogeneous porous media [J].
Aarnes, Jorg E. ;
Efendiev, Yalchin .
MULTISCALE MODELING & SIMULATION, 2006, 5 (03) :918-939
[2]   A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids [J].
Aarnes, Jorg E. ;
Krogstad, Stein ;
Lie, Knut-Andreas .
MULTISCALE MODELING & SIMULATION, 2006, 5 (02) :337-363
[3]  
Aarnes Jorg E., 2009, Multiscale modeling and simulation in science, P3, DOI DOI 10.1007/978-3-540-88857-41
[4]   On a priori error analysis of fully discrete heterogeneous multiscale FEM [J].
Abdulle, A .
MULTISCALE MODELING & SIMULATION, 2005, 4 (02) :447-459
[5]   Adaptive finite element heterogeneous multiscale method for homogenization problems [J].
Abdulle, A. ;
Nonnenmacher, A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (37-40) :2710-2726
[6]  
Abdulle A, 2009, GAKUTO Internat. Ser. Math. Sci. Appl., V31, P133
[7]   The heterogeneous multiscale method [J].
Abdulle, Assyr ;
Weinan, E. ;
Engquist, Bjoern ;
Vanden-Eijnden, Eric .
ACTA NUMERICA, 2012, 21 :1-87
[8]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[9]  
Alt H. W., 1985, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V12, P335
[10]   HOMOGENIZATION OF IMMISCIBLE COMPRESSIBLE TWO-PHASE FLOW IN POROUS MEDIA: APPLICATION TO GAS MIGRATION IN A NUCLEAR WASTE REPOSITORY [J].
Amaziane, B. ;
Antontsev, S. ;
Pankratov, L. ;
Piatnitski, A. .
MULTISCALE MODELING & SIMULATION, 2010, 8 (05) :2023-2047