Abscisic acid suppresses thermomorphogenesis in Arabidopsis thaliana

被引:9
|
作者
Xu, Yang [1 ]
Zhu, Ziqiang [1 ]
机构
[1] Nanjing Normal Univ, Coll Life Sci, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Abscisic acid; thermomorphogenesis; Arabidopsis thaliana; DROUGHT TOLERANCE; BIOSYNTHESIS; FAMILY; LIGHT;
D O I
10.1080/15592324.2020.1746510
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Arabidopsis thaliana seedlings exhibit longer hypocotyls when they are grown under high ambient temperature, which is defined as thermomorphogenesis. Although it is well established that high temperature triggers auxin biosynthesis to stimulate hypocotyl elongation, the physiological functions of other endogenous phytohormones during thermomorphogenesis are still elusive. Here, we report that exogenous application of abscisic acid (ABA) strongly inhibits hypocotyl elongation under high ambient temperature. Hypocotyl elongations of ABA biosynthesis deficient mutants are more sensitive to high temperature, suggesting that endogenous ABA has a robust inhibition effect. Moreover, blocking ABA perception or signaling impedes the negative effect of ABA. Finally, we show that ABA also suppresses the hypersensitivity to high temperature of an auxin over-accumulation mutant (yuc1D), indicating that activation of auxin signaling is not sufficient to override the repression by ABA. Taken together, we demonstrate that ABA is a negative regulator during plant thermomorphogenesis.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Epigenetic regulation of thermomorphogenesis in Arabidopsis thaliana
    Hou, Yifeng
    Yan, Yan
    Cao, Xiaofeng
    ABIOTECH, 2022, 3 (01) : 12 - 24
  • [2] Epigenetic regulation of thermomorphogenesis in Arabidopsis thaliana
    Yifeng Hou
    Yan Yan
    Xiaofeng Cao
    aBIOTECH, 2022, 3 : 12 - 24
  • [3] Abscisic acid analogs as chemical probes for dissection of abscisic acid responses in Arabidopsis thaliana
    Benson, Chantel L.
    Kepka, Michal
    Wunschel, Christian
    Rajagopalan, Nandhakishore
    Nelson, Ken M.
    Christmann, Alexander
    Abrams, Suzanne R.
    Grill, Erwin
    Loewen, Michele C.
    PHYTOCHEMISTRY, 2015, 113 : 96 - 107
  • [4] Abscisic Acid Suppresses Hypocotyl Elongation by Dephosphorylating Plasma Membrane H+-ATPase in Arabidopsis thaliana
    Hayashi, Yuki
    Takahashi, Koji
    Inoue, Shin-ichiro
    Kinoshita, Toshinori
    PLANT AND CELL PHYSIOLOGY, 2014, 55 (04) : 845 - 853
  • [5] Abscisic acid is a negative regulator of root gravitropism in Arabidopsis thaliana
    Han, Woong
    Rong, Honglin
    Zhang, Hanma
    Wang, Myeong-Hyeon
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2009, 378 (04) : 695 - 700
  • [6] The phytohormone abscisic acid modulates protein carbonylation in Arabidopsis thaliana
    Jaballi, Amal
    Missihoun, Tagnon D.
    PHYSIOLOGIA PLANTARUM, 2022, 174 (02)
  • [7] Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana
    Takahashi, N
    Goto, N
    Okada, K
    Takahashi, H
    PLANTA, 2002, 216 (02) : 203 - 211
  • [8] Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana
    Nobuyuki Takahashi
    Nobuharu Goto
    Kiyotaka Okada
    Hideyuki Takahashi
    Planta, 2002, 216 : 203 - 211
  • [9] Isolation and characterization of abscisic acid sensitive mutants in Arabidopsis thaliana
    Nishimura, N
    Yoshida, T
    Murayama, M
    Asami, T
    Shinozaki, K
    Hirayama, T
    PLANT AND CELL PHYSIOLOGY, 2003, 44 : S152 - S152
  • [10] Neophaseic acid catabolism in the 9'-hydroxylation pathway of abscisic acid in Arabidopsis thaliana
    Bai, Ya-Li
    Yin, Xiaoming
    Xiong, Cai-Feng
    Cai, Bao-Dong
    Wu, Yan
    Zhang, Xiao-Yun
    Wei, Zhenwei
    Ye, Tiantian
    Feng, Yu-Qi
    PLANT COMMUNICATIONS, 2022, 3 (05)