Single-crystal nickel-rich layered-oxide battery cathode materials: synthesis, electrochemistry, and intra-granular fracture

被引:441
作者
Qian, Guannan [1 ]
Zhang, Youtian [2 ]
Li, Linsen [1 ]
Zhang, Ruixin [3 ]
Xu, Junmeng [3 ]
Cheng, Zhenjie [4 ]
Xie, Sijie [4 ]
Wang, Han [1 ]
Rao, Qunli [5 ]
He, Yushi [1 ]
Shen, Yanbin [4 ]
Chen, Liwei [4 ,6 ]
Tang, Ming [2 ]
Ma, Zi-Feng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Electrochem Energy Device Res Ctr SEED, Dept Chem Engn, Shanghai 200240, Peoples R China
[2] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77251 USA
[3] Beijing Opton Opt Technol, Mat Anal Ctr, Beijing 100021, Peoples R China
[4] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion SINANO, Suzhou 215123, Jiangsu, Peoples R China
[5] Shanghai Jiao Tong Univ, Instrument Anal Ctr, Shanghai 200240, Peoples R China
[6] Shanghai Jiao Tong Univ, In Situ Ctr Phys Sci, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
关键词
Electro-mechanical degradation; Lithium nickel manganese cobalt oxide; Batteries; Structure-property relationship; Single-crystal cathode; TRANSITION-METAL OXIDE; NI-RICH; ION; PERFORMANCE; NMC; ELECTRODES; STABILITY; MANGANESE; CRACKING;
D O I
10.1016/j.ensm.2020.01.027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electro-mechanical degradation is commonly observed in various battery electrode materials, which are often prepared as polycrystalline particles consisting of nanoscale primary grains. The anisotropic volume change during lithium extraction/insertion makes these materials intrinsically vulnerable to grain-boundary (intergranular) fracture that leads to rapid impedance growth and capacity decay. Here, guided by fracture mechanics analysis, we synthesize microsized single-crystal Ni-rich layered-oxide (NMC) cathode materials via an industrially-applicable molten-salt approach. Using single-crystal LiNi0.6Mn0.2Co0.2O2 as a model material, we show that the cycle performance of the Ni-rich NMC can be significantly improved by eliminating the internal grain boundaries and inter-granular fracture. The single-crystal LiNi0.6Mn0.2Co0.2O2 cathodes show high specific capacity (183 mAh g(-1) at 0.1 C rate, 4.3-2.8 V) and excellent capacity retention (94% after 300 cycles at 1C/1C cycling). Further, it is confirmed for the first time that the single-crystal LiNi0.6Mn0.2Co0.2O2 particles are stable against intra-granular fracture as well under normal operating conditions but do crack if severely overcharged. Electrochemical-shock resistant single-crystal NMC reveals an alternative path towards developing better battery cathode materials, beyond the traditional one built upon polycrystalline NMC.
引用
收藏
页码:140 / 149
页数:10
相关论文
共 39 条
[21]   Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives [J].
Myung, Seung-Taek ;
Maglia, Filippo ;
Park, Kang-Joon ;
Yoon, Chong Seung ;
Lamp, Peter ;
Kim, Sung-Jin ;
Sun, Yang-Kook .
ACS ENERGY LETTERS, 2017, 2 (01) :196-223
[22]   Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries [J].
Noh, Hyung-Joo ;
Youn, Sungjune ;
Yoon, Chong Seung ;
Sun, Yang-Kook .
JOURNAL OF POWER SOURCES, 2013, 233 :121-130
[23]   Alloy Negative Electrodes for Li-Ion Batteries [J].
Obrovac, M. N. ;
Chevrier, V. L. .
CHEMICAL REVIEWS, 2014, 114 (23) :11444-11502
[24]   Improved Cycling Stability of Li[Ni0.90Co0.05Mn0.05]O2 Through Microstructure Modification by Boron Doping for Li-Ion Batteries [J].
Park, Kang-Joon ;
Jung, Hun-Gi ;
Kuo, Liang-Yin ;
Kaghazchi, Payam ;
Yoon, Chong S. ;
Sun, Yang-Kook .
ADVANCED ENERGY MATERIALS, 2018, 8 (25)
[25]   Extended Solid Solutions and Coherent Transformations in Nanoscale Olivine Cathodes [J].
Ravnsbaek, D. B. ;
Xiang, K. ;
Xing, W. ;
Borkiewicz, O. J. ;
Wiaderek, K. M. ;
Gionet, P. ;
Chapman, K. W. ;
Chupas, P. J. ;
Chiang, Y. -M. .
NANO LETTERS, 2014, 14 (03) :1484-1491
[26]   Capacity Fading of Ni-Rich Li[NixCoyMn1-x-y]O2 (0.6 ≤ x ≤ 0.95) Cathodes for High-Energy-Density Lithium-Ion Batteries: Bulk or Surface Degradation? [J].
Ryu, Hoon-Hee ;
Park, Kang-Joon ;
Yoon, Chong S. ;
Sun, Yang-Kook .
CHEMISTRY OF MATERIALS, 2018, 30 (03) :1155-1163
[27]  
Schipper F, 2017, J ELECTROCHEM SOC, V164, pA6220, DOI 10.1149/2.0351701jes
[28]   Structural fatigue in spinel electrodes in Li/Lix[Mn2]O4 cells [J].
Shao-Horn, Y ;
Hackney, SA ;
Kahaian, AJ ;
Kepler, KD ;
Skinner, E ;
Vaughey, JT ;
Thackeray, MM .
JOURNAL OF POWER SOURCES, 1999, 81 :496-499
[29]  
Sun YK, 2009, NAT MATER, V8, P320, DOI [10.1038/nmat2418, 10.1038/NMAT2418]
[30]   Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries [J].
Tsai, Ping-Chun ;
Wen, Bohua ;
Wolfman, Mark ;
Choe, Min-Ju ;
Pan, Menghsuan Sam ;
Su, Liang ;
Thornton, Katsuyo ;
Cabana, Jordi ;
Chiang, Yet-Ming .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (04) :860-871