Exploring Unique Relevance for Mutual Information based Feature Selection

被引:0
作者
Liu, Shiyu [1 ]
Motani, Mehul [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore, Singapore
来源
2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT) | 2020年
关键词
mutual information; feature selection; unique relevance;
D O I
10.1109/isit44484.2020.9174304
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Mutual Information (MI), a measure from information theory, is widely used in feature selection. Despite its great success, a promising feature property, namely the unique relevance (UR) of a feature, remains unexplored. In this paper, we improve the performance of mutual information based feature selection (MIBFS) by exploring the utility of unique relevance (UR). We provide a theoretical justification for the value of UR and prove that the optimal feature subset must contain all features with UR. Since existing MIBFS follows the criterion of Maximize Relevance with Minimum Redundancy (MRwMR) which ignores UR of features, we augment it to include the objective of boosting unique relevance (BUR). This leads to a new criterion for MIBFS, called MRwMR-BUR. We conduct experiments on six public datasets and the results indicate that MRwMR-BUR consistently outperforms MRwMR when tested with three popular classifiers. We believe this new insight can lead to new optimality bounds and algorithms.
引用
收藏
页码:2747 / 2752
页数:6
相关论文
共 32 条
[1]  
Alexander V., 2012, SENSORS ACTUATORS B
[2]  
[Anonymous], 1994, 11 INT C MACHINE LEA, DOI 10.1016/B978-1-55860-335-6.50023-4
[3]  
Banerjee PK, 2018, IEEE INT SYMP INFO, P141, DOI 10.1109/ISIT.2018.8437757
[4]  
Barbier J, 2018, IEEE INT SYMP INFO, P1390, DOI 10.1109/ISIT.2018.8437522
[5]   Representation Learning: A Review and New Perspectives [J].
Bengio, Yoshua ;
Courville, Aaron ;
Vincent, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1798-1828
[6]   Feature selection using Joint Mutual Information Maximisation [J].
Bennasar, Mohamed ;
Hicks, Yulia ;
Setchi, Rossitza .
EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (22) :8520-8532
[7]   Application of high-dimensional feature selection: evaluation for genomic prediction in man [J].
Bermingham, M. L. ;
Pong-Wong, R. ;
Spiliopoulou, A. ;
Hayward, C. ;
Rudan, I. ;
Campbell, H. ;
Wright, A. F. ;
Wilson, J. F. ;
Agakov, F. ;
Navarro, P. ;
Haley, C. S. .
SCIENTIFIC REPORTS, 2015, 5
[8]   Quantifying Unique Information [J].
Bertschinger, Nils ;
Rauh, Johannes ;
Olbrich, Eckehard ;
Jost, Juergen ;
Ay, Nihat .
ENTROPY, 2014, 16 (04) :2161-2183
[9]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[10]  
Brown G, 2012, J MACH LEARN RES, V13, P27