The limit as p → ∞ in the eigenvalue problem for a system of p-Laplacians

被引:0
作者
Bonheure, Denis [1 ]
Rossi, Julio D. [2 ]
Saintier, Nicolas [2 ]
机构
[1] Univ Libre Bruxelles, Dept Math, CP 214,Blvd Triomphe, B-1050 Brussels, Belgium
[2] Univ Buenos Aires, FCEyN, Dept Matemat, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, Argentina
关键词
p-Laplacian; Viscosity solutions; Infinity Laplacian; Nonlinear eigenvalue problem; TUG-OF-WAR; VISCOSITY SOLUTIONS;
D O I
10.1007/s10231-015-0547-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the behavior as p -> infinity of eigenvalues and eigenfunctions of a system of p-Laplacians, that is {-Delta(p)u = lambda alpha u(alpha-1)v(beta) Omega, -Delta(p)u =lambda alpha u(alpha) v(beta-1) Omega, u = v = 0, partial derivative Omega, in a bounded smooth domain Omega. Here alpha + beta = p. We assume that alpha/p -> Gamma and beta/p -> 1 -Gamma as p -> infinity and we prove that for the first eigenvalue lambda(1, p) we have (lambda(1, p))(1/ p) -> lambda(infinity) = 1/max(x is an element of Omega)dist(x, partial derivative Omega) Concerning the eigenfunctions (u(p), v(p)) associated with lambda(1, p) normalized by integral(Omega)vertical bar u(p)vertical bar(alpha)vertical bar vp vertical bar(beta) = 1, there is a uniform limit (u(infinity), v(infinity)) that is a solution to a limit minimization problem as well as a viscosity solution to {min{-Delta(infinity)u(infinity), vertical bar Delta u(infinity)vertical bar - lambda(infinity)u(infinity)(Gamma)v(infinity)(1-Gamma)} = 0, min{-Delta(infinity)v(infinity), vertical bar Delta u(infinity)vertical bar - lambda(infinity)u(infinity)(Gamma)v(infinity)(1-Gamma)} = 0 In addition, we also analyze the limit PDE when we consider higher eigenvalues.
引用
收藏
页码:1771 / 1785
页数:15
相关论文
共 22 条
[1]  
[Anonymous], 1992, Bull. Amer. Math. Soc.
[2]   A tour of the theory of absolutely minimizing functions [J].
Aronsson, G ;
Crandall, MG ;
Juutinen, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 41 (04) :439-505
[3]  
Bhattacharya T., 1989, SEM MAT U POL TOR FA, P15
[4]   Some remarks on a system of quasilinear elliptic equations [J].
Boccardo, L ;
de Figueiredo, DG .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2002, 9 (03) :309-323
[5]   An axiomatic approach to image interpolation [J].
Caselles, V ;
Morel, JM ;
Sbert, C .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) :376-386
[6]  
Champion T., 2009, COMMUN APPL ANAL, V13, P547
[7]   Estimates for eigenvalues of quasilinear elliptic systems [J].
De Napoli, Pablo L. ;
Pinasco, Juan P. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 227 (01) :102-115
[8]  
Fleckinger J., 1997, ADV DIFFERENTIAL EQU, V2, P981
[9]   The Neumann problem for the ∞-Laplacian and the Monge-Kantorovich mass transfer problem [J].
Garcia-Azorero, J. ;
Manfredi, J. J. ;
Peral, I. ;
Rossi, J. D. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (02) :349-366
[10]  
Garcia-Azorero J, 2006, REND LINCEI-MAT APPL, V17, P199