Γ-convergence of Onsager-Machlup functionals: I. With applications to maximum a posteriori estimation in Bayesian inverse problems

被引:13
作者
Ayanbayev, Birzhan [1 ,2 ]
Klebanov, Ilja [3 ]
Li, Han Cheng [4 ]
Sullivan, T. J. [1 ,2 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7A1, W Midlands, England
[2] Univ Warwick, Sch Engn, Coventry CV4 7A1, W Midlands, England
[3] Free Univ Berlin, Arnimallee 6, D-14195 Berlin, Germany
[4] Univ Potsdam, Inst Math, Campus Golm,Haus 9,Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
关键词
Bayesian inverse problems; Gamma-convergence; maximum a posteriori estimation; Onsager-Machlup functional; small ball probabilities; transition path theory;
D O I
10.1088/1361-6420/ac3f81
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Bayesian solution to a statistical inverse problem can be summarised by a mode of the posterior distribution, i.e. a maximum a posteriori (MAP) estimator. The MAP estimator essentially coincides with the (regularised) variational solution to the inverse problem, seen as minimisation of the Onsager-Machlup (OM) functional of the posterior measure. An open problem in the stability analysis of inverse problems is to establish a relationship between the convergence properties of solutions obtained by the variational approach and by the Bayesian approach. To address this problem, we propose a general convergence theory for modes that is based on the Gamma-convergence of OM functionals, and apply this theory to Bayesian inverse problems with Gaussian and edge-preserving Besov priors. Part II of this paper considers more general prior distributions.
引用
收藏
页数:32
相关论文
共 33 条
[1]   Sparsity-promoting and edge-preserving maximum a posteriori estimators in non-parametric Bayesian inverse problems [J].
Agapiou, Sergios ;
Burger, Martin ;
Dashti, Masoumeh ;
Helin, Tapio .
INVERSE PROBLEMS, 2018, 34 (04)
[2]   Γ-convergence of Onsager-Machlup functionals: II. Infinite product measures on Banach spaces [J].
Ayanbayev, Birzhan ;
Klebanov, Ilja ;
Lie, Han Cheng ;
Sullivan, T. J. .
INVERSE PROBLEMS, 2022, 38 (02)
[3]  
Bogachev Vladimir Igorevich, 1998, Gaussian Measures
[4]  
Braides A, 2006, HBK DIFF EQUAT STATI, V3, P101, DOI 10.1016/S1874-5733(06)80006-9
[5]  
Braides Andrea, 2002, OXF LEC S MATH APPL, V22
[6]   Generalized Modes in Bayesian Inverse Problems [J].
Clason, Christian ;
Helin, Tapio ;
Kretschmann, Remo ;
Piiroinen, Petteri .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2019, 7 (02) :652-684
[7]  
Dal Maso Gianni, 1993, Prog. Nonlinear Differ. Equ. Appl., V8
[8]   MAP estimators and their consistency in Bayesian nonparametric inverse problems [J].
Dashti, M. ;
Law, K. J. H. ;
Stuart, A. M. ;
Voss, J. .
INVERSE PROBLEMS, 2013, 29 (09)
[9]   BESOV PRIORS FOR BAYESIAN INVERSE PROBLEMS [J].
Dashti, Masoumeh ;
Harris, Stephen ;
Stuart, Andrew .
INVERSE PROBLEMS AND IMAGING, 2012, 6 (02) :183-200
[10]  
De Giorgi E., 2006, Selected Papers