Parallel Laser Printing of a Thermal Emission Pattern in a Phase-Change Thin Film Cavity for Infrared Camouflage and Security

被引:32
作者
Kim, Yeongseon [1 ]
Kim, Chanhee [1 ]
Lee, Myeongkyu [1 ]
机构
[1] Yonsei Univ, Dept Mat Sci & Engn, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
Ge2Sb2Te5; film; infrared camouflage; laser printing; security; thermal emission; BEHAVIOR;
D O I
10.1002/lpor.202100545
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Engineering the thermal emission of a material in the long-wavelength infrared (IR) range is applicable to a wide variety of fields, including IR-adaptive camouflage, information encryption, radiative cooling, energy-saving windows, and personal thermal management. Although many different materials or structures have been proposed for these purposes, the position-selective dynamic control of their thermal emission remains a significant challenge. Herein, a laser printing method is presented to spatially tune the thermal emission of a Ge2Sb2Te5 (GST) planar cavity formed on a metal back reflector. Crystallization-induced emission patterns are directly recorded into an amorphous GST film (400 nm thick) in a layer-by-layer fashion, where the crystallization of each layer is patterned using a spatially modulated pulsed laser beam. The proposed parallel laser printing method can produce gradient emission patterns as well as stepwise patterns, enabling the emissivity at a specific position to be tuned from 0.26 to 0.8. This provides a promising platform for IR-adaptive camouflage, which is demonstrated with emissivity-modulated GST emitters. This study also shows that laser-printed emission patterns can be effectively utilized for security applications such as anti-forgery.
引用
收藏
页数:8
相关论文
共 43 条
[1]   Infrared electrochromic conducting polymer devices [J].
Brooke, Robert ;
Mitraka, Evangelia ;
Sardar, Samim ;
Sandberg, Mats ;
Sawatdee, Anurak ;
Berggren, Magnus ;
Crispin, Xavier ;
Jonsson, Magnus P. .
JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (23) :5824-5830
[2]   Tuneable Thermal Emission Using Chalcogenide Metasurface [J].
Cao, Tun ;
Zhang, Xinyu ;
Dong, Weiling ;
Lu, Li ;
Zhou, Xilin ;
Zhuang, Xin ;
Deng, Junhong ;
Cheng, Xing ;
Li, Guixin ;
Simpson, Robert E. .
ADVANCED OPTICAL MATERIALS, 2018, 6 (16)
[3]   Adaptive Multispectral Infrared Camouflage [J].
Chandra, Sayan ;
Franklin, Daniel ;
Cozart, Jared ;
Safaei, Alireza ;
Chanda, Debashis .
ACS PHOTONICS, 2018, 5 (11) :4513-4519
[4]   High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting [J].
Chang, Chun-Chieh ;
Kort-Kamp, Wilton J. M. ;
Nogan, John ;
Luk, Ting S. ;
Azad, Abul K. ;
Taylor, Antoinette J. ;
Dalvit, Diego A. R. ;
Sykora, Milan ;
Chen, Hou-Tong .
NANO LETTERS, 2018, 18 (12) :7665-7673
[5]   Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling [J].
Chen, Yijun ;
Mandal, Jyotirmoy ;
Li, Wenxi ;
Smith-Washington, Ajani ;
Tsai, Cheng-Chia ;
Huang, Wenlong ;
Shrestha, Sajan ;
Yu, Nanfang ;
Han, Ray P. S. ;
Cao, Anyuan ;
Yang, Yuan .
SCIENCE ADVANCES, 2020, 6 (17)
[6]   Spatial and Temporal Modulation of Thermal Emission [J].
Coppens, Zachary J. ;
Valentine, Jason G. .
ADVANCED MATERIALS, 2017, 29 (39)
[7]   Tungsten-Carbon Nanotube Composite Photonic Crystals as Thermally Stable Spectral-Selective Absorbers and Emitters for Thermophotovoltaics [J].
Cui, Kehang ;
Lemaire, Paul ;
Zhao, Hangbo ;
Savas, Timothy ;
Parsons, Gregory ;
Hart, A. John .
ADVANCED ENERGY MATERIALS, 2018, 8 (27)
[8]   Tunable Mid-Infrared Phase-Change Metasurface [J].
Dong, Weiling ;
Qiu, Yimei ;
Zhou, Xilin ;
Banas, Agnieszka ;
Banas, Krzysztof ;
Breese, Mark B. H. ;
Cao, Tun ;
Simpson, Robert E. .
ADVANCED OPTICAL MATERIALS, 2018, 6 (14)
[9]   Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST [J].
Du, Kai-Kai ;
Li, Qiang ;
Lyu, Yan-Biao ;
Ding, Ji-Chao ;
Lu, Yue ;
Cheng, Zhi-Yuan ;
Qiu, Min .
LIGHT-SCIENCE & APPLICATIONS, 2017, 6 :e16194-e16194
[10]   An Adaptive and Wearable Thermal Camouflage Device [J].
Hong, Sahngki ;
Shin, Sunmi ;
Chen, Renkun .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (11)