Construction and investigation of a planar waveguide in photo-thermal-refractive glass by proton implantation

被引:8
作者
Chen, Jing-Yi [1 ]
Xie, Zhong-Hu [1 ]
Li, Wei-Nan [2 ]
Lin, She-Bao [3 ]
Zhang, Liao-Lin [4 ]
Liu, Chun-Xiao [1 ]
机构
[1] Nanjing Univ Post & Telecommun, Coll Elect & Opt Engn, Nanjing 210023, Jiangsu, Peoples R China
[2] Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China
[3] Baoji Univ Arts & Sci, Inst Phys & Optoelect Technol, Baoji 721007, Peoples R China
[4] Jiangxi Univ Sci & Technol, Sch Mat Sci & Engn, Ganzhou 341000, Peoples R China
来源
OPTIK | 2020年 / 207卷
基金
中国国家自然科学基金;
关键词
Ion implantation; Planar waveguide; PTR glass; Annealing treatment; ION-IMPLANTATION; OPTICAL-PROPERTIES; CRYSTAL; PROFILES; GRADIENT;
D O I
10.1016/j.ijleo.2020.164461
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, the fabrication of optical planar waveguide in PTR glass by proton implantation is reported for the first time to our knowledge. The planar waveguide with a width of approximately 3.4 mu m was generated under the condition of 400 keV H+ ion implantation with a dose of 8.0 x 10 16 ions . cm(-2) at room temperature. The formation mechanism of PTR glass waveguide was illustrated with the aid of the SRIM program. The optical characteristics of the PTR waveguide, such as refractive index profile and near-field intensity distribution, were investigated in detail. The fabricated PTR waveguide presents a structure of both index-well and optical barrier according to the reconstructed refractive index profile. The finite-difference beam propagation method was carried out to simulate guiding modal distribution. Besides, in order to study the thermal stability of the H+-implanted PTR waveguide, annealing treatment was conducted at different temperatures.
引用
收藏
页数:7
相关论文
共 30 条
[21]   Bromide photo-thermo-refractive glass for volume Bragg gratings and waveguide structure recording [J].
Victor, Dubrovin ;
Nikolay, Nikonorov ;
Alexander, Ignatiev .
OPTICAL MATERIALS EXPRESS, 2017, 7 (07) :2280-2292
[22]   Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages [J].
Wang, Cheng ;
Zhang, Mian ;
Chen, Xi ;
Bertrand, Maxime ;
Shams-Ansari, Amirhassan ;
Chandrasekhar, Sethumadhavan ;
Winzer, Peter ;
Loncar, Marko .
NATURE, 2018, 562 (7725) :101-+
[23]   Quasi-phase-matched frequency conversion in ridge waveguides fabricated by ion implantation and diamond dicing of MgO:LiNbO3 crystals [J].
Wang, Lei ;
Haunhorst, Christian E. ;
Volk, Martin F. ;
Chen, Feng ;
Kip, Detlef .
OPTICS EXPRESS, 2015, 23 (23) :30188-30194
[24]   Planar optical waveguides in β-BaB2O4 produced by oxygen ion implantation at low doses [J].
Wang, XL ;
Chen, F ;
Wang, KM ;
Lu, QM ;
Shen, DY ;
Nie, R .
APPLIED PHYSICS LETTERS, 2004, 85 (09) :1457-1459
[25]   Optical Planar Waveguides Fabricated by Using Carbon Ion Implantation in Terbium Gallium Garnet [J].
Wang, Yue ;
Shen, Xiao-Liang ;
Zheng, Rui-Lin ;
Lv, Peng ;
Liu, Chun-Xiao ;
Guo, Hai-Tao .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2018, 72 (07) :765-769
[26]   Optical planar waveguides in photo-thermal-refractive glasses fabricated by single- or double-energy carbon ion implantation [J].
Wang, Yue ;
Shen, Xiao-Liang ;
Zheng, Rui-Lin ;
Guo, Hai-Tao ;
Lv, Peng ;
Liu, Chun-Xiao .
OPTICAL ENGINEERING, 2018, 57 (01)
[27]   The formation and optical properties of planar waveguide in laser crystal Nd:YGG by carbon ion implantation [J].
Zhao, Jin-Hua ;
Qin, Xi-Feng ;
Wang, Feng-Xiang ;
Jiao, Yang ;
Guan, Jing ;
Fu, Gang .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2017, 409 :163-166
[28]   Guiding properties of proton-implanted Nd3+-doped phosphate glass waveguides [J].
Zhu, Qi-Feng ;
Wang, Yue ;
Shen, Jian-Ping ;
Guo, Hai-Tao ;
Liu, Chun-Xiao .
CHINESE PHYSICS B, 2018, 27 (05)
[29]   Optical Properties of a Proton-implanted Nd:CNGG Planar Waveguide [J].
Zhu, Qian-Lin ;
Lin, Ming-Fu ;
Chen, Jing-Yi ;
Wang, Zhong-Yue ;
Liu, Chun-Xiao .
CURRENT OPTICS AND PHOTONICS, 2019, 3 (02) :172-176
[30]  
Ziegler J.F., SRIM STOPPING RANGE