Implementation and testing of the gridded Vienna Mapping Function 1 (VMF1)

被引:200
作者
Kouba, J. [1 ]
机构
[1] Nat Resources Canada, Geodet Survey Div, Ottawa, ON K1A 0E9, Canada
关键词
troposphere mapping function; tropospheric propagation delay estimation; precise point positioning (PPP); GPS and VLBI;
D O I
10.1007/s00190-007-0170-0
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The new gridded Vienna Mapping Function (VMF1) was implemented and compared to the well-established site-dependent VMF1, directly and by using precise point positioning (PPP) with International GNSS Service (IGS) Final orbits/clocks for a 1.5-year GPS data set of 11 globally distributed IGS stations. The gridded VMF1 data can be interpolated for any location and for any time after 1994, whereas the site-dependent VMF1 data are only available at selected IGS stations and only after 2004. Both gridded and site-dependent VMF1 PPP solutions agree within 1 and 2 mm for the horizontal and vertical position components, respectively, provided that respective VMF1 hydrostatic zenith path delays (ZPD) are used for hydrostatic ZPD mapping to slant delays. The total ZPD of the gridded and site-dependent VMF1 data agree with PPP ZPD solutions with RMS of 1.5 and 1.8 cm, respectively. Such precise total ZPDs could provide useful initial a priori ZPD estimates for kinematic PPP and regional static GPS solutions. The hydrostatic ZPDs of the gridded VMF1 compare with the site-dependent VMF1 ZPDs with RMS of 0.3 cm, subject to some biases and discontinuities of up to 4 cm, which are likely due to different strategies used in the generation of the site-dependent VMF1 data. The precision of gridded hydrostatic ZPD should be sufficient for accurate a priori hydrostatic ZPD mapping in all precise GPS and very long baseline interferometry (VLBI) solutions. Conversely, precise and globally distributed geodetic solutions of total ZPDs, which need to be linked to VLBI to control biases and stability, should also provide a consistent and stable reference frame for long-term and state-of-the-art numerical weather modeling.
引用
收藏
页码:193 / 205
页数:13
相关论文
共 25 条
[1]   ITRF2000: A new release of the International Terrestrial Reference frame for earth science applications [J].
Altamimi, Z ;
Sillard, P ;
Boucher, C .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2002, 107 (B10)
[2]  
Berg H., 1948, ALLGEMEINE METEOROLO
[3]   The international GPS service (IGS): An interdisciplinary service in support of earth sciences [J].
Beutler, G ;
Rothacher, M ;
Schaer, S ;
Springer, TA ;
Kouba, J ;
Neilan, RE .
SATELLITE DYNAMICS, ORBIT ANALYSIS AND COMBINATION OF SPACE TECHNIQUES, 1999, 23 (04) :631-653
[4]   GPS METEOROLOGY - REMOTE-SENSING OF ATMOSPHERIC WATER-VAPOR USING THE GLOBAL POSITIONING SYSTEM [J].
BEVIS, M ;
BUSINGER, S ;
HERRING, TA ;
ROCKEN, C ;
ANTHES, RA ;
WARE, RH .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1992, 97 (D14) :15787-15801
[5]   Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data [J].
Boehm, J ;
Niell, A ;
Tregoning, P ;
Schuh, H .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (07)
[6]   Vienna mapping functions in VLBI analyses [J].
Boehm, J ;
Schuh, H .
GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (01) :L016031-4
[7]   Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data [J].
Boehm, Johannes ;
Werl, Birgit ;
Schuh, Harald .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2006, 111 (B2)
[8]   GEODESY BY RADIO INTERFEROMETRY - EFFECTS OF ATMOSPHERIC MODELING ERRORS ON ESTIMATES OF BASELINE LENGTH [J].
DAVIS, JL ;
HERRING, TA ;
SHAPIRO, II ;
ROGERS, AEE ;
ELGERED, G .
RADIO SCIENCE, 1985, 20 (06) :1593-1607
[9]  
FERLAND R, 2006, 2003 2004 IGS TECHNI
[10]  
GENDT G, 1998, P 1998 IGS AN CTR WO, P205