Porous, Aligned, and Biomimetic Fibers of Regenerated Silk Fibroin Produced by Solution Blow Spinning

被引:62
作者
Magaz, Adrian [1 ,2 ]
Roberts, Aled D. [1 ]
Faraji, Sheida [1 ]
Nascimento, Tatiana R. L. [3 ]
Medeiros, Eliton S. [3 ]
Zhang, Wenzhao [1 ]
Greenhalgh, Ryan D. [1 ,6 ]
Mautner, Andreas [4 ]
Li, Xu [2 ,5 ]
Blaker, Jonny J. [1 ]
机构
[1] Univ Manchester, Sch Mat, Bioact Mat Grp, Manchester, Lancs, England
[2] ASTAR, IMRE, Singapore, Singapore
[3] Univ Fed Paraiba, Dept Mat Engn, Lab Mat & Biosyst, Joao Pessoa, Paraiba, Brazil
[4] Univ Vienna, Inst Mat Chem & Res, Polymer & Composite Engn Grp, Vienna, Austria
[5] Natl Univ Singapore, Dept Chem, Singapore, Singapore
[6] Univ Cambridge, Dept Physiol Dev & Neurosci, Cambridge, England
基金
英国工程与自然科学研究理事会;
关键词
BOMBYX-MORI SILK; AQUEOUS-SOLUTIONS; SPIDER SILK; MECHANICAL-PROPERTIES; NANOFIBERS; RHEOLOGY; TEMPERATURE; MATS; PH;
D O I
10.1021/acs.biomac.8b01233
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Solution blow spinning (SBS) has emerged as a rapid and scalable technique for the production of polymeric and ceramic materials into micro-/nanofibers. Here, SBS was employed to produce submicrometer fibers of regenerated silk fibroin (RSF) from Bombyx mori (silkworm) cocoons based on formic acid or aqueous systems. Spinning in the presence of vapor permitted the production of fibers from aqueous solutions, and high alignment could be obtained by modifying the SBS setup to give a concentrated channeled airflow. The combination of SBS and a thermally induced phase separation technique (TIPS) resulted in the production of macro-/microporous fibers with 3D interconnected pores. Furthermore, a coaxial SBS system enabled a pH gradient and kosmotropic salts to be applied at the point of fiber formation, mimicking some of the aspects of the natural spinning process, fostering fiber formation by self-assembly of the spinning dope. This scalable and fast production of various types of silk-based fibrous scaffolds could be suitable for a myriad of biomedical applications.
引用
收藏
页码:4542 / 4553
页数:12
相关论文
共 76 条
[1]  
Agarwal N, 1997, J APPL POLYM SCI, V63, P401
[2]   Silk-based biomaterials [J].
Altman, GH ;
Diaz, F ;
Jakuba, C ;
Calabro, T ;
Horan, RL ;
Chen, JS ;
Lu, H ;
Richmond, J ;
Kaplan, DL .
BIOMATERIALS, 2003, 24 (03) :401-416
[3]   Structural Characterization and Mechanical Properties of Electrospun Silk Fibroin Nanofiber Mats [J].
Amiraliyan, N. ;
Nouri, M. ;
Kish, M. Haghighat .
POLYMER SCIENCE SERIES A, 2010, 52 (04) :407-412
[4]  
Andersson M, 2017, NAT CHEM BIOL, V13, P262, DOI [10.1038/NCHEMBIO.2269, 10.1038/nchembio.2269]
[5]   Silk Spinning in Silkworms and Spiders [J].
Andersson, Marlene ;
Johansson, Jan ;
Rising, Anna .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (08)
[6]   In Situ Deposition of PLGA Nanofibers via Solution Blow Spinning [J].
Behrens, Adam M. ;
Casey, Brendan J. ;
Sikorski, Michael J. ;
Wu, Kyle L. ;
Tutak, Wojtek ;
Sandler, Anthony D. ;
Kofinas, Peter .
ACS MACRO LETTERS, 2014, 3 (03) :249-254
[7]   EXAMINATION OF THE SECONDARY STRUCTURE OF PROTEINS BY DECONVOLVED FTIR SPECTRA [J].
BYLER, DM ;
SUSI, H .
BIOPOLYMERS, 1986, 25 (03) :469-487
[8]   Electrospinning of reconstituted silk fiber from aqueous silk fibroin solution [J].
Cao, Hui ;
Chen, Xin ;
Huang, Lei ;
Shao, Zhengzhong .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2009, 29 (07) :2270-2274
[9]   Silk I and Silk II studied by fast scanning calorimetry [J].
Cebe, Peggy ;
Partlow, Benjamin P. ;
Kaplan, David L. ;
Wurm, Andreas ;
Zhuravlev, Evgeny ;
Schick, Christoph .
ACTA BIOMATERIALIA, 2017, 55 :323-332
[10]   Structural, dielectric, and electrical properties of lithium niobate microfibers [J].
Cena, Cicero Rafael ;
Behera, Ajay Kumar ;
Behera, Banarji .
JOURNAL OF ADVANCED CERAMICS, 2016, 5 (01) :84-92