Morphological Snakes

被引:40
作者
Alvarez, Luis [1 ]
Baumela, Luis [2 ]
Henriquez, Pedro [1 ]
Marquez-Neila, Pablo [2 ]
机构
[1] Univ Las Palmas Gran Canaria, Dep Informat & Sistemas, Las Palmas Gran Canaria, Spain
[2] Univ Politecn Madrid, Fac Informat, Dep Inteligencia Artificial, Madrid, Spain
来源
2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2010年
关键词
D O I
10.1109/CVPR.2010.5539900
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a morphological approach to curve evolution. The differential operators used in the standard PDE snake models can be approached using morphological operations on a binary level set. By combining the morphological operators associated to the PDE components we achieve a new snakes evolution algorithm. This new solution is based on numerical methods which are very simple, fast and stable. Moreover, since the level set is just a binary piecewise constant function, this approach does not require to estimate a contour distance function. To illustrate the results obtained we present some numerical experiments on real images.
引用
收藏
页码:2197 / 2202
页数:6
相关论文
共 11 条
[1]   A FAST LEVEL SET METHOD FOR PROPAGATING INTERFACES [J].
ADALSTEINSSON, D ;
SETHIAN, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 118 (02) :269-277
[2]   Geodesic active contours [J].
Caselles, V ;
Kimmel, R ;
Sapiro, G .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1997, 22 (01) :61-79
[3]   A MORPHOLOGICAL SCHEME FOR MEAN-CURVATURE MOTION AND APPLICATIONS TO ANISOTROPIC DIFFUSION AND MOTION OF LEVEL SETS [J].
CATTE, F ;
DIBOS, F ;
KOEPFLER, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (06) :1895-1909
[4]   ON ACTIVE CONTOUR MODELS AND BALLOONS [J].
COHEN, LD .
CVGIP-IMAGE UNDERSTANDING, 1991, 53 (02) :211-218
[5]   Fast geodesic active contours [J].
Goldenberg, R ;
Kimmel, R ;
Rivlin, E ;
Rudzsky, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (10) :1467-1475
[6]  
Kimmel R., 2003, NUMERICAL GEOMETRY I
[7]   FRONTS PROPAGATING WITH CURVATURE-DEPENDENT SPEED - ALGORITHMS BASED ON HAMILTON-JACOBI FORMULATIONS [J].
OSHER, S ;
SETHIAN, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 79 (01) :12-49
[8]   Gradient vector flow fast geometric active contours [J].
Paragios, N ;
Mellina-Gottardo, O ;
Ramesh, V .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (03) :402-407
[9]  
Shi Y., 2005, P INT C COMP VIS PAT
[10]  
Yoo TS, 2002, STUD HEALTH TECHNOL, V85, P586