Improving convergence performance of relaxation-based transient analysis by matrix splitting in circuit simulation

被引:27
作者
Jiang, YL [1 ]
Chen, RMM
Wing, O
机构
[1] Xian Jiaotong Univ, Sch Sci, Inst Informat & Syst Sci, Xian 710049, Peoples R China
[2] City Univ Hong Kong, Sch Creat Media, Hong Kong, Hong Kong, Peoples R China
[3] Chinese Univ Hong Kong, Fac Engn, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
circuit simulation; Krylov's subspace method; linear integral-differential-algebraic equations; matrix splitting; parallel processing; transient analysis; waveform relaxation;
D O I
10.1109/81.928160
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We study the convergence performance of relaxation-based algorithms for circuit simulation in the time domain. The circuits are modeled by linear integral-differential-algebraic equations. We show that in theory, convergence depends only on the spectral properties of certain matrices when splitting is applied to the circuit matrices to set up the waveform relaxation solution of a circuit. A new decoupling technique is derived, which speeds up the convergence of relaxation-based algorithms. In function spaces a Krylov's subspace method, namely the waveform generalized minimal residual algorithm, is also presented in the paper. Numerical examples are given to illustrate how judicious splitting and how Krylov's method can help improve convergence in some situations.
引用
收藏
页码:769 / 780
页数:12
相关论文
共 25 条
[1]  
Chen R. M. M., 1993, [Proceedings] 1993 IEEE International Symposium on Circuits and Systems, P2133, DOI 10.1109/ISCAS.1993.394179
[2]  
CHEN RMM, 1973, P IEEE INT S CIRC TH, P223
[3]   THE WAVE-FORM RELAXATION METHOD FOR SYSTEMS OF DIFFERENTIAL-ALGEBRAIC EQUATIONS [J].
CROW, ML ;
ILIC, MD .
MATHEMATICAL AND COMPUTER MODELLING, 1994, 19 (12) :67-84
[4]   COMPARISONS OF WEAK REGULAR SPLITTINGS AND MULTISPLITTING METHODS [J].
ELSNER, L .
NUMERISCHE MATHEMATIK, 1989, 56 (2-3) :283-289
[5]   Convergence properties of waveform relaxation circuit simulation methods [J].
Gristede, GD ;
Ruehli, AE ;
Zukowski, CA .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1998, 45 (07) :726-738
[6]   Waveform relaxation methods for functional differential systems of neutral type [J].
Jackiewicz, Z ;
Kwapisz, M ;
Lo, E .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 207 (01) :255-285
[7]   Convergence of waveform relaxation methods for differential-algebraic systems [J].
Jackiewicz, Z ;
Kwapisz, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (06) :2303-2317
[8]   On SOR waveform relaxation methods [J].
Janssen, J ;
Vandewalle, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (06) :2456-2481
[9]   Multigrid waveform relaxation on spatial finite element meshes: The continuous-time case [J].
Janssen, J ;
Vandewalle, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (02) :456-474
[10]  
Jiang YL, 1997, IEICE T FUND ELECTR, VE80A, P1961