Statistical analysis of multimode weakly nonlinear Rayleigh-Taylor instability in the presence of surface tension -: art. no. 036401

被引:14
作者
Garnier, J
Cherfils-Clérouin, C
Holstein, PA
机构
[1] Univ Toulouse 3, Lab Stat & Probabil, F-31062 Toulouse 4, France
[2] Commiss Energie Atom, Direct Applicat Mil, F-91680 Bruyeres Le Chatel, France
来源
PHYSICAL REVIEW E | 2003年 / 68卷 / 03期
关键词
D O I
10.1103/PhysRevE.68.036401
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A weakly nonlinear model is proposed for the Rayleigh-Taylor instability in the presence of surface tension. The dynamics of a multimode perturbation of the interface between two incompressible, inviscid, irrotational, and immiscible fluids is analyzed. The quadratic and cubic nonlinear effects are taken into account. They include the nonlinear corrections to the exponential growths of the fundamental modulations. The role of the initial modulation spectrum is discussed. A saturation criterion in terms of the product of a local rms and a particular wave number is exhibited. It gives theoretical foundations for numerical conjectures and allows one to analyze the effects of fundamental parameters of the problem such as the dimension or the Atwood number.
引用
收藏
页数:12
相关论文
共 24 条
[1]  
Adler R. J., 1981, GEOMETRY RANDOM FIEL
[2]   POWER LAWS AND SIMILARITY OF RAYLEIGH-TAYLOR AND RICHTMYER-MESHKOV MIXING FRONTS AT ALL DENSITY RATIOS [J].
ALON, U ;
HECHT, J ;
OFER, D ;
SHVARTS, D .
PHYSICAL REVIEW LETTERS, 1995, 74 (04) :534-537
[3]  
BELENKII SZ, 1967, P PN LEBEDEV I, V29, P197
[4]   A weakly nonlinear theory for the dynamical Rayleigh-Taylor instability [J].
Berning, M ;
Rubenchik, AM .
PHYSICS OF FLUIDS, 1998, 10 (07) :1564-1587
[5]   RAYLEIGH-TAYLOR INSTABILITY AND LASER-PELLET FUSION [J].
BODNER, SE .
PHYSICAL REVIEW LETTERS, 1974, 33 (13) :761-764
[6]  
Chandrasekhar S., 1968, Hydrodynamic and Hydromagnetic Stability
[7]   Simple model for the turbulent mixing width at an ablating surface [J].
Cherfils, C ;
Mikaelian, KO .
PHYSICS OF FLUIDS, 1996, 8 (02) :522-535
[8]   3-DIMENSIONAL MULTIMODE SIMULATIONS OF THE ABLATIVE RAYLEIGH-TAYLOR INSTABILITY [J].
DAHLBURG, JP ;
FYFE, DE ;
GARDNER, JH ;
HAAN, SW ;
BODNER, SE ;
DOOLEN, GD .
PHYSICS OF PLASMAS, 1995, 2 (06) :2453-2459
[9]   ANALYSIS OF WEAKLY NONLINEAR 3-DIMENSIONAL RAYLEIGH-TAYLOR INSTABILITY GROWTH [J].
DUNNING, MJ ;
HAAN, SW .
PHYSICS OF PLASMAS, 1995, 2 (05) :1669-1681
[10]   ONSET OF NONLINEAR SATURATION FOR RAYLEIGH-TAYLOR GROWTH IN THE PRESENCE OF A FULL SPECTRUM OF MODES [J].
HAAN, SW .
PHYSICAL REVIEW A, 1989, 39 (11) :5812-5825