Antisymmetric solutions for a class of quasilinear defocusing Schrodinger equations

被引:0
作者
Gamboa, Janete Soares [1 ]
Zhou, Jiazheng [1 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
quasilinear Schrodinger equation; antisymmetric solutions; Nehari manifold; SIGN-CHANGING SOLUTIONS; SOLITON-SOLUTIONS; ELLIPTIC-EQUATIONS; NODAL SOLUTIONS; EXISTENCE;
D O I
10.14232/ejqtde.2020.1.16
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the existence of antisymmetric solutions for the quasilinear defocusing Schrodinger equation in H-1(RN): -Delta u + k/2u Delta u(2) + V(x)u = g(u), where N >= 3, V(x) is a positive continuous potential, g(u) is of subcritical growth and k is a non-negative parameter. By considering a minimizing problem restricted on a partial Nehari manifold, we prove the existence of antisymmetric solutions via a deformation lemma.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 28 条
[1]   Soliton solutions for a class of quasilinear Schrodinger equations with a parameter [J].
Alves, Claudianor O. ;
Wang, Youjun ;
Shen, Yaotian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (01) :318-343
[2]  
[Anonymous], 1996, PROGR NONLINEAR DIFF, DOI DOI 10.1007/978-1-4612-4146-1
[3]  
[Anonymous], 2003, TOPOL METHOD NONL AN
[4]  
[Anonymous], 1986, CBMS REG C SER MATH
[5]  
[Anonymous], 2010, The Method of Nehari Manifold, Handbook of Nonconvex Analysis and Applications
[6]   Partial symmetry of least energy nodal solutions to some variational problems [J].
Bartsch, T ;
Weth, T ;
Willew, M .
JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1) :1-18
[7]   Existence of τ-antisymmetric solutions for a system in RN [J].
de Gamboa, Janete ;
Gloss, Elisandra ;
Zhou, Jiazheng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (02) :810-831
[8]  
Carvalho JS, 2011, DIFFER INTEGRAL EQU, V24, P109
[9]   A note on existence of antisymmetric solutions for a class of nonlinear Schrodinger equations [J].
Carvalho, Janete S. ;
Maia, Liliane A. ;
Miyagaki, Olimpio H. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (01) :67-86
[10]  
Chabrowski J., 1996, COMMENT MATH U CAROL, V37, P1