On Shapiro's compactness criterion for composition operators

被引:7
作者
Akeroyd, John R. [1 ]
机构
[1] Univ Arkansas, Dept Math, Fayetteville, AR 72701 USA
关键词
Compact composition operator; Nevanlinna counting function; Schatten class;
D O I
10.1016/j.jmaa.2010.11.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an elementary and direct proof of the identity; lim sup vertical bar(w vertical bar -> 1-) N(psi) (W)/vertical bar 1-vertical bar W vertical bar = lim sup(vertical bar a vertical bar -> 1-)(1 - vertical bar a vertical bar(2)) parallel to 1/(1- (a) over bar psi)parallel to(2)(H2) for any analytic self-map psi of {z: vertical bar z vertical bar < 1}: where N(psi) denotes the Nevanlinna counting function of psi. We further show that one can find analytic self-maps psi of {z: vertical bar z vertical bar < 1}, where the composition operator C(psi) on the Hardy space H(2) is compact, such that parallel to psi(n)parallel to(H2) tends to zero at an arbitrarily slow rate, as n -> infinity; even in the case that psi is univalent. Among these are new examples, where C(psi) is compact on H(2), but not in any of the Schatten classes. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 16 条
[1]  
[Anonymous], 1991, MATH SURVEYS MONOGRA
[2]  
[Anonymous], COMPOSITION OPERATOR
[3]  
[Anonymous], 1990, MONOGRAPHS TXB PURE
[4]   Orthogonal functions in H∞ [J].
Bishop, CJ .
PACIFIC JOURNAL OF MATHEMATICS, 2005, 220 (01) :1-31
[6]  
Carroll T., 1991, J. Operator Theory, V26, P109
[7]   Essential norms of composition operators and Aleksandrov measures [J].
Cima, JA ;
Matheson, AL .
PACIFIC JOURNAL OF MATHEMATICS, 1997, 179 (01) :59-64
[8]  
Cowen C.C., 1995, STUD ADV MATH
[9]  
Garnett J.B., 1982, Bounded Analytic Functions
[10]  
Garnett J.B, 2005, NEW MATH MONOGR, V2, DOI 10.1017/CBO9780511546617