Semiclassical limit of the entanglement in closed pure systems

被引:25
作者
Angelo, RM
Furuya, K
机构
[1] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
[2] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil
来源
PHYSICAL REVIEW A | 2005年 / 71卷 / 04期
关键词
D O I
10.1103/PhysRevA.71.042321
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss the semiclassical limit of the entanglement for the class of closed pure systems. By means of analytical and numerical calculations, we obtain two main results: (i) the short-time entanglement does not depend on Planck's constant and (ii) the long-time entanglement increases as more semiclassical regimes are attained. On one hand, this result is in contrast with the idea that the entanglement should be destroyed when the macroscopic limit is reached. On the other hand, it emphasizes the role played by decoherence in the process of emergence of the classical world. We also found that, for Gaussian initial states, the entanglement dynamics may be described by an entirely classical entropy in the semiclassical limit.
引用
收藏
页数:7
相关论文
共 49 条
[1]   Quantum linear mutual information and classical correlations in globally pure bipartite systems [J].
Angelo, RM ;
Vitiello, SA ;
de Aguiar, MAM ;
Furuya, K .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 338 (3-4) :458-470
[2]   Ordered quantization and the Ehrenfest time scale [J].
Angelo, RM ;
Sanz, L ;
Furuya, K .
PHYSICAL REVIEW E, 2003, 68 (01) :5
[3]   Rapid decoherence in integrable systems: A border effect [J].
Angelo, RM ;
Furuya, K ;
Nemes, MC ;
Pellegrino, GQ .
PHYSICAL REVIEW E, 1999, 60 (05) :5407-5411
[4]   Recoherence in the entanglement dynamics and classical orbits in the N-atom Jaynes-Cummings model -: art. no. 043801 [J].
Angelo, RM ;
Furuya, K ;
Nemes, MC ;
Pellegrino, GQ .
PHYSICAL REVIEW A, 2001, 64 (04) :438011-438017
[5]  
ANGELO RM, 2003, THESIS U ESTADUAL CA
[6]  
[Anonymous], CHANCE MATTER
[7]   ENTROPY INEQUALITIES [J].
ARAKI, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 18 (02) :160-&
[8]   Moment equations for probability distributions in classical and quantum mechanics [J].
Ballentine, LE ;
McRae, SM .
PHYSICAL REVIEW A, 1998, 58 (03) :1799-1809
[9]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[10]   Quantum information and computation [J].
Bennett, CH ;
DiVincenzo, DP .
NATURE, 2000, 404 (6775) :247-255