Phase transition of charged Black Holes in Brans-Dicke theory through geometrical thermodynamics

被引:40
作者
Hendi, S. H. [1 ,2 ,3 ]
Panahiyan, S. [1 ,2 ,4 ]
Panah, B. Eslam [1 ,2 ]
Armanfard, Z. [1 ,2 ]
机构
[1] Shiraz Univ, Dept Phys, Coll Sci, Shiraz 71454, Iran
[2] Shiraz Univ, Biruni Observ, Coll Sci, Shiraz 71454, Iran
[3] RIAAM, POB 55134-441, Maragha, Iran
[4] Shahid Beheshti Univ, Dept Phys, Tehran 19839, Iran
来源
EUROPEAN PHYSICAL JOURNAL C | 2016年 / 76卷 / 07期
关键词
MASSIVE GRAVITATIONAL-WAVES; COSMOLOGICAL CONSTANT; WEAK MODIFICATION; METRIC GEOMETRY; DARK ENERGY; COLLAPSE; GRAVITY; GEOMETROTHERMODYNAMICS; NEUTRALIZATION; ENTROPY;
D O I
10.1140/epjc/s10052-016-4235-1
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper, we take into account black hole solutions of Brans-Dicke-Maxwell theory and investigate their stability and phase transition points. We apply the concept of geometry in thermodynamics to obtain phase transition points and compare its results with those, calculated in the canonical ensemble through heat capacity. We show that these black holes enjoy second order phase transitions. We also show that there is a lower bound for the horizon radius of physical charged black holes in Brans-Dicke theory, which originates from restrictions of positivity of temperature. In addition, we find that employing a specific thermodynamical metric in the context of geometrical thermodynamics yields divergencies for the thermodynamical Ricci scalar in places of the phase transitions. It will be pointed out that due to the characteristic behavior of the thermodynamical Ricci scalar around its divergence points, one is able to distinguish the physical limitation point from the phase transitions. In addition, the free energy of these black holes will be obtained and its behavior will be investigated. It will be shown that the behavior of the free energy in the place where the heat capacity diverges demonstrates second order phase transition characteristics.
引用
收藏
页数:14
相关论文
共 74 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]   Geometry of higher-dimensional black hole thermodynamics -: art. no. 024017 [J].
Åman, JE ;
Pidokrajt, N .
PHYSICAL REVIEW D, 2006, 73 (02)
[3]   Geometry of black hole thermodynamics [J].
Åman, JE ;
Bengtsson, I ;
Pidokrajt, N .
GENERAL RELATIVITY AND GRAVITATION, 2003, 35 (10) :1733-1743
[4]  
[Anonymous], ARXIV12091272
[5]  
[Anonymous], ARXIV07110012
[6]   Inflation and late-time cosmic acceleration in non-minimal Maxwell- F(R) gravity and the generation of large-scale magnetic fields [J].
Bamba, Kazuharu ;
Odintsov, Sergei D. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2008, (04)
[7]   MACHS PRINCIPLE AND A RELATIVISTIC THEORY OF GRAVITATION [J].
BRANS, C ;
DICKE, RH .
PHYSICAL REVIEW, 1961, 124 (03) :925-&
[8]   Geometrothermodynamics of higher dimensional black holes [J].
Bravetti, Alessandro ;
Momeni, Davood ;
Myrzakulov, Ratbay ;
Quevedo, Hernando .
GENERAL RELATIVITY AND GRAVITATION, 2013, 45 (08) :1603-1617
[9]   The conformal metric structure of Geometrothermodynamics [J].
Bravetti, Alessandro ;
Lopez-Monsalvo, Cesar S. ;
Nettel, Francisco ;
Quevedo, Hernando .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (03)
[10]   NEUTRALIZATION OF THE COSMOLOGICAL CONSTANT BY MEMBRANE CREATION [J].
BROWN, JD ;
TEITELBOIM, C .
NUCLEAR PHYSICS B, 1988, 297 (04) :787-836