The Rossmann fold of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a nuclear docking site for antisense oligonucleotides containing a TAAAT motif

被引:15
|
作者
Griffoni, C
Laktionov, PP
Rykova, EY
Spisni, E
Riccio, M
Santi, S
Bryksin, A
Volodko, N
Kraft, R
Vlassov, V
Tomasi, V
机构
[1] Univ Bologna, Dept Expt Biol, I-40126 Bologna, Italy
[2] Acad Sci, Inst Bioorgan Chem, Novosibirsk, Russia
[3] CNR, Inst Cytomorphol, Bologna, Italy
[4] Max Delbruck Ctr Mol Med, Berlin, Germany
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS | 2001年 / 1530卷 / 01期
关键词
antisense oligonucleotide; cytosolic phosholipase A(2); nucleus; glyceraldehyde-3-phosphate dehydrogenase;
D O I
10.1016/S1388-1981(00)00166-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The subcellular localisation of oligodeoxynucleotides (ODN) is a major limitation for their use against nuclear targets. In this study we demonstrate that an antisense ODN directed against cytosolic phospholipase A(2) (cPLA2) mRNA is efficiently taken up and accumulates in the nuclei of endothelial cells (HUVEC), human monocytes and HeLa cells. Gel shift experiments and incubation of cells with oligonucleotide derivatives show that the anti-cPLA2 oligo binds a 37 kDa protein in nuclear extracts. The TAAAT sequence was identified as the major binding motif for the nuclear protein in competition experiments with mutated ODNs. Modification of the AAA tripler resulted in an ODN which failed to localise in the nucleus. Moreover, inserting a TAAAT motif into an ODN localising in the cytosol did not modify its localisation. The 37 kDa protein was purified and identified after peptide sequencing as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). It was shown by confocal microscopy that GAPDH co-localises with anti-cPLA2 ODN in the nucleus and commercial GAPDH effectively binds the oligo. Competition experiments with increasing concentration of NAD(+) co-factor indicate that the GAPDH Rossmann fold is a docking site for antisense oligonucleotides containing a TAAAT motif. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:32 / 46
页数:15
相关论文
共 50 条
  • [1] Glutathione conjugates recognize the Rossmann fold of glyceraldehyde-3-phosphate dehydrogenase
    Puder, M
    Soberman, RJ
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (16) : 10936 - 10940
  • [2] Role of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in DNA repair
    Kosova, A. A.
    Khodyreva, S. N.
    Lavrik, O. I.
    BIOCHEMISTRY-MOSCOW, 2017, 82 (06) : 643 - 654
  • [3] Role of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in DNA repair
    A. A. Kosova
    S. N. Khodyreva
    O. I. Lavrik
    Biochemistry (Moscow), 2017, 82 : 643 - 654
  • [4] Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease
    El Kadmiri, N.
    Slassi, I.
    El Moutawakil, B.
    Nadifi, S.
    Tadevosyan, A.
    Hachem, A.
    Soukri, A.
    PATHOLOGIE BIOLOGIE, 2014, 62 (06): : 333 - 336
  • [5] INHIBITION OF GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE BY PENTALENOLACTONE - IDENTIFICATION OF THE ACTIVE-SITE OF GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE
    CANE, DE
    SOHNG, JK
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1990, 199 : 38 - ORGN
  • [6] Aberrant Expression of Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) in Warthin Tumors
    Mandic, Robert
    Agaimy, Abbas
    Pinto-Quintero, Daniel
    Roth, Katrin
    Teymoortash, Afshin
    Schwarzbach, Hans
    Stoehr, Christine G.
    Rodepeter, Fiona R.
    Stuck, Boris A.
    Bette, Michael
    CANCERS, 2020, 12 (05)
  • [7] Protein moonlighting in iron metabolism: glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
    Boradia, Vishant Mahendra
    Raje, Manoj
    Raje, Chaaya Iyengar
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2014, 42 : 1796 - 1801
  • [8] A novel moonlight function of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) for immunomodulation
    Nakano, Toshiaki
    Goto, Shigeru
    Takaoka, Yuki
    Tseng, Hui-Peng
    Fujimura, Takashi
    Kawamoto, Seiji
    Ono, Kazuhisa
    Chen, Chao-Long
    BIOFACTORS, 2018, 44 (06) : 597 - 608
  • [9] Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a specific substrate of yeast metacaspase
    Silva, A.
    Almeida, B.
    Sampaio-Marques, B.
    Reis, M. I. R.
    Ohlmeier, S.
    Rodrigues, F.
    do Vale, A.
    Ludovico, P.
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2011, 1813 (12): : 2044 - 2049
  • [10] Moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) modulates protein aggregation
    Chaudhary, Surbhi
    Dhiman, Asmita
    Patidar, Anil
    Malhotra, Himanshu
    Talukdar, Sharmila
    Dilawari, Rahul
    Chaubey, Gaurav Kumar
    Modanwal, Radheshyam
    Raje, Chaaya Iyengar
    Raje, Manoj
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2021, 1867 (10):