Classical orthogonal polynomials in two variables:: a matrix approach

被引:14
作者
Fernández, L
Pérez, TE
Piñar, MA
机构
[1] Univ Granada, Dept Matemat Aplicada, Granada, Spain
[2] Univ Granada, Inst Carols I Fis Teor & Computac, Granada, Spain
关键词
orthogonal polynomials in two variables; classical orthogonal polynomials;
D O I
10.1007/s11075-004-3625-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Classical orthogonal polynomials in two variables are defined as the orthogonal polynomials associated to a two-variable moment functional satisfying a matrix analogue of the Pearson differential equation. Furthermore, we characterize classical orthogonal polynomials in two variables as the polynomial solutions of a matrix second order partial differential equation.
引用
收藏
页码:131 / 142
页数:12
相关论文
共 15 条
[1]   On sturm-liouville polynomial systems [J].
Bochner, S .
MATHEMATISCHE ZEITSCHRIFT, 1929, 29 :730-736
[2]  
Chihara T, 1978, INTRO ORTHOGONAL POL
[3]  
Dunkl CF., 2001, Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and its Applications, DOI 10.1017/CBO9780511565717
[4]  
HONR RA, 1991, TOPICS MATRIX ANAL
[5]   Orthogonal polynomials in two variables and second-order partial differential equations [J].
Kim, YJ ;
Kwon, KH ;
Lee, JK .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 82 (1-2) :239-260
[6]   Partial differential equations having orthogonal polynomial solutions [J].
Kim, YJ ;
Kwon, KH ;
Lee, JK .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 99 (1-2) :239-253
[7]  
KIM YJ, 2000, METHODS APPL ANAL, V7, P57
[8]   ORTHOGONALITY AND RECURSION FORMULAS FOR POLYNOMIALS IN N VARIABLES [J].
KOWALSKI, MA .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1982, 13 (02) :316-323
[9]   THE RECURSION FORMULAS FOR ORTHOGONAL POLYNOMIALS IN N VARIABLES [J].
KOWALSKI, MA .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1982, 13 (02) :309-315
[10]  
Krall HL, 1967, Ann. Mat. Pura Appl., V76, P325, DOI DOI 10.1007/BF02412238