The generalized Korteweg-de Vries-Burgers equation in H2(R)

被引:15
作者
Dlotko, Tomasz [1 ]
机构
[1] Silesian Univ, Inst Math, PL-40007 Katowice, Poland
关键词
Generalized KdV-Burgers equation; Parabolic approximation; Global solvability; Global attractor;
D O I
10.1016/j.na.2010.08.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The generalized KdV-Burgers equation u(t)+(delta u(xx)+g(u))(x)-nu u(xx)+gamma u = f (x), delta, nu > 0, gamma >= 0, is considered in this paper. Using the parabolic regularization technique we prove local and global solvability in H-2(R) of the Cauchy problem for this equation. Several regularity properties of the approximations stay valid for solutions constructed in such a way. Next, for when gamma > 0, we study the asymptotic behavior of the corresponding semigroup on H-2(R), constructing the (H-2(R), H3- (R)) global attractor. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:721 / 732
页数:12
相关论文
共 19 条
[2]  
Amann H., 1995, Abstract Linear Theory
[3]  
[Anonymous], 1991, LEZIONI LINCEI 1988
[4]  
[Anonymous], 1992, Studies in Mathematics and its Applications
[5]  
[Anonymous], 1989, Geometric Theory of Semilinear Parabolic Partial Differential Equations, DOI DOI 10.1007/BFB0089647
[6]  
Cholewa J., 2000, Global attractors in abstract parabolic problems
[7]  
CHOLEWA JW, 2003, EVOLUTION EQUATIONS, V60, P13
[8]   Generalized Korteweg-de Vries equation in H1 (R) [J].
Dlotko, Tomasz ;
Kania, Maria B. ;
Yang, Meihua .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (09) :3934-3947
[9]   WEAKLY DAMPED FORCED KORTEWEG-DEVRIES EQUATIONS BEHAVE AS A FINITE DIMENSIONAL DYNAMICAL SYSTEM IN THE LONG-TIME [J].
GHIDAGLIA, JM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 74 (02) :369-390
[10]   KORTEWEG-DE-VRIES EQUATION [J].
KATO, T .
MANUSCRIPTA MATHEMATICA, 1979, 28 (1-3) :89-99