Development of a time-gated system for Raman spectroscopy of biological samples

被引:47
作者
Knorr, Florian [1 ]
Smith, Zachary J. [1 ]
Wachsmann-Hogiu, Sebastian [1 ,2 ]
机构
[1] Univ Calif Davis, Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA
[2] Univ Calif Davis, Dept Pathol & Lab Med, Sacramento, CA 95817 USA
来源
OPTICS EXPRESS | 2010年 / 18卷 / 19期
基金
美国国家科学基金会;
关键词
FLUORESCENCE SUPPRESSION; TISSUE; IDENTIFICATION; REJECTION; DIAGNOSIS; SPECTRA; CELLS; BONE; WOOD;
D O I
10.1364/OE.18.020049
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A time gating system has been constructed that is capable of recording high quality Raman spectra of highly fluorescing biological samples while operating below the photodamage threshold. Using a collinear gating geometry and careful attention to power conservation, we have achieved all-optical switching with a one picosecond gating time and 5% peak gating efficiency. The energy per pulse in this instrument is more than 3 orders of magnitude weaker than previous reports. Using this system we have performed proof-of-concept experiments on a sample composed of perylene dissolved in toluene, and the stem of a Jasminum multiflorum plant, the latter case being particularly important for the study of plants used in production of cellulosic biofuels. In both cases, a high SNR spectrum of the high-wavenumber region of the spectrum was recorded in the presence of an overwhelming fluorescence background. (C) 2010 Optical Society of America
引用
收藏
页码:20049 / 20058
页数:10
相关论文
共 33 条
[1]   FT-Raman spectroscopy of wood: Identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana) [J].
Agarwal, UP ;
Ralph, SA .
APPLIED SPECTROSCOPY, 1997, 51 (11) :1648-1655
[2]   Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy [J].
Baker, Rebecca ;
Matousek, Pavel ;
Ronayne, Kate Louise ;
Parker, Anthony William ;
Rogers, Keith ;
Stone, Nicholas .
ANALYST, 2007, 132 (01) :48-53
[3]   Method for automated background subtraction from Raman spectra containing known contaminants [J].
Beier, Brooke D. ;
Berger, Andrew J. .
ANALYST, 2009, 134 (06) :1198-1202
[4]   STEADY-STATE AND DYNAMIC FLUORESCENCE EMISSION FROM ABIES WOOD [J].
CASTELLAN, A ;
DAVIDSON, RS .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 1994, 78 (03) :275-279
[5]   Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy [J].
Chan, James W. ;
Taylor, Douglas S. ;
Lane, Stephen M. ;
Zwerdling, Theodore ;
Tuscano, Joseph ;
Huser, Thomas .
ANALYTICAL CHEMISTRY, 2008, 80 (06) :2180-2187
[6]   Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells [J].
Chen, K ;
Qin, YJ ;
Zheng, F ;
Sun, MH ;
Shi, DR .
OPTICS LETTERS, 2006, 31 (13) :2015-2017
[7]   Online Fluorescence Suppression in Modulated Raman Spectroscopy [J].
De Luca, Anna Chiara ;
Mazilu, Michael ;
Riches, Andrew ;
Herrington, C. Simon ;
Dholakia, Kishan .
ANALYTICAL CHEMISTRY, 2010, 82 (02) :738-745
[8]   Identifying chemical changes in subchondral bone taken from murine knee joints using Raman spectroscopy [J].
Dehring, Karen A. ;
Crane, Nicole J. ;
Smukler, Abigail R. ;
McHugh, Jonathan B. ;
Roessler, Blake J. ;
Morris, Michael D. .
APPLIED SPECTROSCOPY, 2006, 60 (10) :1134-1141
[9]   The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN:: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study [J].
Dyer, J ;
Blau, WJ ;
Coates, CG ;
Creely, CM ;
Gavey, JD ;
George, MW ;
Grills, DC ;
Hudson, S ;
Kelly, JM ;
Matousek, P ;
McGarvey, JJ ;
McMaster, J ;
Parker, AW ;
Towrie, M ;
Weinstein, JA .
PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2003, 2 (05) :542-554
[10]   Nonlinear optical characteristics of carbon disulfide [J].
Ganeev, R. A. ;
Ryasnyanski, A. I. ;
Kuroda, H. .
OPTICS AND SPECTROSCOPY, 2006, 100 (01) :108-118