Fractional recurrence in discrete-time quantum walk

被引:21
作者
Chandrashekar, C. M. [1 ,2 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
来源
CENTRAL EUROPEAN JOURNAL OF PHYSICS | 2010年 / 8卷 / 06期
关键词
quantum walk; recurrence; polya number;
D O I
10.2478/s11534-010-0023-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum recurrence theorem holds for quantum systems with discrete energy eigenvalues and fails to hold in general for systems with continuous energy. We show that during quantum walk process dominated by interference of amplitude corresponding to different paths fail to satisfy the complete quantum recurrence theorem. Due to the revival of the fractional wave packet, a fractional recurrence characterized using quantum Polya number can be seen.
引用
收藏
页码:979 / 988
页数:10
相关论文
共 39 条
  • [1] Aharonov D., 2001, P 33 ANN ACM S THEOR, DOI [10.1145/380752.380758, DOI 10.1145/380752.380758]
  • [2] QUANTUM RANDOM-WALKS
    AHARONOV, Y
    DAVIDOVICH, L
    ZAGURY, N
    [J]. PHYSICAL REVIEW A, 1993, 48 (02): : 1687 - 1690
  • [3] Ambainis A, 2005, PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1099
  • [4] [Anonymous], 2001, PROC 33 ACM SOTC
  • [5] BARREIRA L, 2006, 7 INT C MATH PHYS, P415
  • [6] Berry M, 2001, PHYS WORLD, V14, P39
  • [7] Quantum fractals in boxes
    Berry, MV
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (20): : 6617 - 6629
  • [8] QUANTUM RECURRENCE THEOREM
    BOCCHIERI, P
    LOINGER, A
    [J]. PHYSICAL REVIEW, 1957, 107 (02): : 337 - 338
  • [9] Stochastic problems in physics and astronomy
    Chandrasekhar, S
    [J]. REVIEWS OF MODERN PHYSICS, 1943, 15 (01) : 0001 - 0089
  • [10] Generic quantum walk using a coin-embedded shift operator
    Chandrashekar, C. M.
    [J]. PHYSICAL REVIEW A, 2008, 78 (05):