Fractional recurrence in discrete-time quantum walk

被引:21
|
作者
Chandrashekar, C. M. [1 ,2 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
来源
CENTRAL EUROPEAN JOURNAL OF PHYSICS | 2010年 / 8卷 / 06期
关键词
quantum walk; recurrence; polya number;
D O I
10.2478/s11534-010-0023-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum recurrence theorem holds for quantum systems with discrete energy eigenvalues and fails to hold in general for systems with continuous energy. We show that during quantum walk process dominated by interference of amplitude corresponding to different paths fail to satisfy the complete quantum recurrence theorem. Due to the revival of the fractional wave packet, a fractional recurrence characterized using quantum Polya number can be seen.
引用
收藏
页码:979 / 988
页数:10
相关论文
共 50 条
  • [1] Quantum simulation of a discrete-time quantum stochastic walk
    Schuhmacher, Peter K.
    Govia, Luke C. G.
    Taketani, Bruno G.
    Wilhelm, Frank K.
    EPL, 2021, 133 (05)
  • [2] Quantum magnetometry using discrete-time quantum walk
    Shukla, Kunal
    Chandrashekar, C. M.
    PHYSICAL REVIEW A, 2024, 109 (03)
  • [3] Discrete-Time Quantum Walk on Multilayer Networks
    Jayakody, Mahesh N.
    Pradhan, Priodyuti
    Ben Porath, Dana
    Cohen, Eliahu
    ENTROPY, 2023, 25 (12)
  • [4] The discrete-time quaternionic quantum walk on a graph
    Norio Konno
    Hideo Mitsuhashi
    Iwao Sato
    Quantum Information Processing, 2016, 15 : 651 - 673
  • [5] The discrete-time quaternionic quantum walk on a graph
    Konno, Norio
    Mitsuhashi, Hideo
    Sato, Iwao
    QUANTUM INFORMATION PROCESSING, 2016, 15 (02) : 651 - 673
  • [6] Quantum Network Communication With a Novel Discrete-Time Quantum Walk
    Chen, Xiu-Bo
    Wang, Ya-Lan
    Xu, Gang
    Yang, Yi-Xian
    IEEE ACCESS, 2019, 7 : 13634 - 13642
  • [7] Universal quantum computation using the discrete-time quantum walk
    Lovett, Neil B.
    Cooper, Sally
    Everitt, Matthew
    Trevers, Matthew
    Kendon, Viv
    PHYSICAL REVIEW A, 2010, 81 (04)
  • [8] The discrete-time quantum walk as a stochastic process in quantum mechanics
    Shikano, Yutaka
    Horikawa, Junsei
    Wada, Tatsuaki
    PHYSICA SCRIPTA, 2012, T151
  • [9] Time averaged distribution of a discrete-time quantum walk on the path
    Ide, Yusuke
    Konno, Norio
    Segawa, Etsuo
    QUANTUM INFORMATION PROCESSING, 2012, 11 (05) : 1207 - 1218
  • [10] Discrete-time quantum walk with time-correlated noise
    Peng, Y. F.
    Wang, W.
    Yi, X. X.
    PHYSICAL REVIEW A, 2021, 103 (03)