Efficient Neuromorphic Signal Processing with Resonator Neurons

被引:12
作者
Frady, E. Paxon [1 ]
Sanborn, Sophia [1 ]
Shrestha, Sumit Bam [1 ]
Rubin, Daniel Ben Dayan [1 ]
Orchard, Garrick [1 ]
Sommer, Friedrich T. [1 ]
Davies, Mike [1 ]
机构
[1] Intel Corp, Intel Labs, Santa Clara, CA 95054 USA
来源
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY | 2022年 / 94卷 / 10期
关键词
Neuromorphic computing; Resonator neurons; Spiking neural networks; Optic flow; Speech recognition; LOIHI;
D O I
10.1007/s11265-022-01772-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The biologically inspired spiking neurons used in neuromorphic computing are nonlinear filters with dynamic state variables, which is distinct from the stateless neuron models used in deep learning. The new version of Intel's neuromorphic research processor, Loihi 2, supports an extended range of stateful spiking neuron models with programmable dynamics. Here, we showcase advanced neuron models that can be used to efficiently process streaming data in simulation experiments on emulated Loihi 2 hardware. In one example, Resonate-and-Fire (RF) neurons are used to compute the Short Time Fourier Transform (STFT) with similar computational complexity but 47x less output bandwidth than the conventional STFT. In another example, we describe an algorithm for optical flow estimation using spatiotemporal RF neurons that requires over 90x fewer operations than a conventional DNN-based solution. We also demonstrate backpropagation methods to train non-linear spiking RF neurons for audio classification tasks, suitable for efficient execution on Loihi 2. We conclude with another application of nonlinear filtering showing a cascade of Hopf resonators exhibiting computational properties seen in the cochlea, such as self-normalization. Taken together, this work presents new techniques for an efficient spike-based spectrogram encoder that can be used for signal processing applications.
引用
收藏
页码:917 / 927
页数:11
相关论文
共 22 条
[1]   SPATIOTEMPORAL ENERGY MODELS FOR THE PERCEPTION OF MOTION [J].
ADELSON, EH ;
BERGEN, JR .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1985, 2 (02) :284-299
[2]  
[Anonymous], 1996, Fundamental Concepts An Overview of The Wavelet Theory
[3]   Feature Representations for Neuromorphic Audio Spike Streams [J].
Anumula, Jithendar ;
Neil, Daniel ;
Delbruck, Tobi ;
Liu, Shih-Chii .
FRONTIERS IN NEUROSCIENCE, 2018, 12
[4]   Silicon-Neuron Design: A Dynamical Systems Approach [J].
Arthur, John V. ;
Boahen, Kwabena A. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2011, 58 (05) :1034-1043
[5]   Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook [J].
Davies, Mike ;
Wild, Andreas ;
Orchard, Garrick ;
Sandamirskaya, Yulia ;
Guerra, Gabriel A. Fonseca ;
Joshi, Prasad ;
Plank, Philipp ;
Risbud, Sumedh R. .
PROCEEDINGS OF THE IEEE, 2021, 109 (05) :911-934
[6]   Loihi: A Neuromorphic Manycore Processor with On-Chip Learning [J].
Davies, Mike ;
Srinivasa, Narayan ;
Lin, Tsung-Han ;
Chinya, Gautham ;
Cao, Yongqiang ;
Choday, Sri Harsha ;
Dimou, Georgios ;
Joshi, Prasad ;
Imam, Nabil ;
Jain, Shweta ;
Liao, Yuyun ;
Lin, Chit-Kwan ;
Lines, Andrew ;
Liu, Ruokun ;
Mathaikutty, Deepak ;
Mccoy, Steve ;
Paul, Arnab ;
Tse, Jonathan ;
Venkataramanan, Guruguhanathan ;
Weng, Yi-Hsin ;
Wild, Andreas ;
Yang, Yoonseok ;
Wang, Hong .
IEEE MICRO, 2018, 38 (01) :82-99
[7]   Essential nonlinearities in hearing [J].
Eguíluz, VM ;
Ospeck, M ;
Choe, Y ;
Hudspeth, AJ ;
Magnasco, MO .
PHYSICAL REVIEW LETTERS, 2000, 84 (22) :5232-5235
[8]   Robust computation with rhythmic spike patterns [J].
Frady, E. Paxon ;
Sommer, Friedrich T. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (36) :18050-18059
[9]   Event-Based Vision: A Survey [J].
Gallego, Guillermo ;
Delbruck, Tobi ;
Orchard, Garrick Michael ;
Bartolozzi, Chiara ;
Taba, Brian ;
Censi, Andrea ;
Leutenegger, Stefan ;
Davison, Andrew ;
Conradt, Jorg ;
Daniilidis, Kostas ;
Scaramuzza, Davide .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (01) :154-180
[10]   AUDITORY NONLINEARITY [J].
GOLDSTEIN, JL .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1967, 41 (03) :676-+