Real monodromy action

被引:2
作者
Hauenstein, Jonathan D. [1 ]
Regan, Margaret H. [1 ]
机构
[1] Univ Notre Dame, Dept Appl & Computat Math & Stat, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
Monodromy group; Numerical algebraic geometry; Real algebraic geometry; Real monodromy structure; Homotopy continuation; Parameter homotopy; Kinematics; POLYNOMIAL SYSTEMS; GALOIS-GROUPS;
D O I
10.1016/j.amc.2019.124983
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The monodromy group is an invariant for parameterized systems of polynomial equations that encodes structure of the solutions over the parameter space. Since the structure of real solutions over real parameter spaces are of interest in many applications, real monodromy action is investigated here. A naive extension of monodromy action from the complex numbers to the real numbers is shown to be very restrictive. Therefore, we introduce a real monodromy structure which need not be a group but contains tiered characteristics about the real solutions over the parameter space. An algorithm is provided to compute the real monodromy structure. In addition, this real monodromy structure is applied to an example in kinematics which summarizes all the ways performing loops parameterized by leg lengths can cause a mechanism to change poses. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:13
相关论文
共 23 条
[1]   An algorithm to compute the finite roots of large systems of polynomial equations arising in kinematic synthesis [J].
Baskar, Aravind ;
Bandyopadhyay, Sandipan .
MECHANISM AND MACHINE THEORY, 2019, 133 :493-513
[2]  
Bates D., 2006, BERTINI SOFTWARE NUM
[3]  
Bates DJ, 2013, SOFTW ENVIRON TOOLS
[4]   Monodromy Solver: Sequential and Parallel [J].
Bliss, Nathan ;
Duff, Timothy ;
Leykin, Anton ;
Sommars, Jeff .
ISSAC'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2018, :87-94
[5]  
Bonev I., 2008, Proceedings of the Second Int. Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, P197
[6]   Locating and Counting Equilibria of the Kuramoto Model with Rank-One Coupling [J].
Coss, Owen ;
Hauenstein, Jonathan D. ;
Hong, Hoon ;
Molzahn, Daniel K. .
SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2018, 2 (01) :45-71
[7]   Solving polynomial systems via homotopy continuation and monodromy [J].
Duff, Timothy ;
Hill, Cvetelina ;
Jensen, Anders ;
Lee, Kisun ;
Leykin, Anton ;
Sommars, Jeff .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (03) :1421-1446
[8]   POLYNOMIAL SOLUTIONS TO THE DIRECT KINEMATIC PROBLEM OF PLANAR 3 DEGREE-OF-FREEDOM PARALLEL MANIPULATORS [J].
GOSSELIN, CM ;
SEFRIOUI, J ;
RICHARD, MJ .
MECHANISM AND MACHINE THEORY, 1992, 27 (02) :107-119
[9]  
Harrington H.A., 2019, C P MAPL C WAT ONT C
[10]   GALOIS-GROUPS OF ENUMERATIVE PROBLEMS [J].
HARRIS, J .
DUKE MATHEMATICAL JOURNAL, 1979, 46 (04) :685-724