NiZn-ferrite nanoparticles (9-42 nm) with the chemical formula Ni0.7Zn0.3Fe2O4 were synthesized by a low-temperature solid-state reaction (LTSSR) method. The powder of this ferrite was mixed with epoxy resin to be converted into a radar absorbing nanomaterial in frequencies of 8-12 GHz (X-band). X-ray techniques such as X-ray diffractometer (XRD) and also transmission electron microscope (TEM) were used to analyze the structure properties. It was found that the particle size and magnetic properties of the prepared ferrite sample showed strong dependence on the annealing temperature. The coercivity initially increased and then decreased with increasing the annealing temperature whereas the particle size and saturation magnetization continuously increased. The radar-absorbing properties were studied as a function of frequency, nanoparticle size, ferrite/epoxy resin ratio, and thickness of absorber.