RADAR ABSORPTION OF Ni0.7Zn0.3Fe2O4 NANOPARTICLES

被引:0
作者
Amiri, Gh. R. [1 ]
Yousefi, M. H. [2 ]
Aboulhassani, M. R. [1 ]
Keshavarz, M. H. [2 ]
Shahbazi, D. [3 ]
Fatahian, S. [1 ]
Alahi, M. [1 ]
机构
[1] Islamic Azad Univ, Dept Plasma Phys, Sci & Res Branch, Tehran, Iran
[2] Malek Ashtar Univ Technol, Nanoctr, Dept Sci, Shahin Shahr, Iran
[3] Isfahan Med Univ, Dept Med, Esfahan, Iran
关键词
X-ray techniques; radar absorption; nanomaterial; LTSSR-method;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
NiZn-ferrite nanoparticles (9-42 nm) with the chemical formula Ni0.7Zn0.3Fe2O4 were synthesized by a low-temperature solid-state reaction (LTSSR) method. The powder of this ferrite was mixed with epoxy resin to be converted into a radar absorbing nanomaterial in frequencies of 8-12 GHz (X-band). X-ray techniques such as X-ray diffractometer (XRD) and also transmission electron microscope (TEM) were used to analyze the structure properties. It was found that the particle size and magnetic properties of the prepared ferrite sample showed strong dependence on the annealing temperature. The coercivity initially increased and then decreased with increasing the annealing temperature whereas the particle size and saturation magnetization continuously increased. The radar-absorbing properties were studied as a function of frequency, nanoparticle size, ferrite/epoxy resin ratio, and thickness of absorber.
引用
收藏
页码:719 / 725
页数:7
相关论文
共 50 条
  • [1] Room temperature magnetoelectric coupling of 0.4Zn0.3Ni0.7Fe2O4-0.6PbZr0.52Ti0.48O3 multiferroic nanocomposite
    Chakraborty, S.
    Mandal, S. K.
    Debnath, Rajesh
    Singh, Swati
    Dey, P.
    Saha, B.
    [J]. MATERIALS TODAY-PROCEEDINGS, 2017, 4 (04) : 5663 - 5666
  • [2] Relaxation mechanism in Ni0.5Zn0.5Fe2O4 nanocrystalline ferrite at a lower temperature
    Choudhary, B. L.
    Kumari, Namita
    Kumari, Jyoti
    Kumar, Arvind
    Dolia, S. N.
    [J]. MATERIALS LETTERS, 2021, 304
  • [3] Structural, dielectric and gas sensing behavior of Mn substituted spinet MFe2O4 (M=Zn, Cu, Ni, and Co) ferrite nanoparticles
    Kumar, E. Ranjith
    Reddy, P. Siva Prasada
    Devi, G. Sarala
    Sathiyaraj, S.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 398 : 281 - 288
  • [4] Feξ-V2O5 nano-composites:: Room temperature magneto-optical and radar absorption properties
    Maaza, M.
    Nemraoui, O.
    Sella, C.
    Gibaud, A.
    Seda, T. B.
    Beye, A. C.
    [J]. OPTICAL MATERIALS, 2007, 29 (07) : 760 - 765
  • [5] 57Fe Mossbauer spectroscopy investigation of NiFe2O4and MnFe2O4ferrite nanoparticles prepared by thermal treatment method
    Chireh, Mahshid
    Naseri, Mahmoud
    Kamalianfar, Ahmad
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2020, 126 (07):
  • [6] 57Fe Mossbauer spectroscopy investigation of NiFe2O4 and MnFe2O4 ferrite nanoparticles prepared by thermal treatment method
    Mahshid Chireh
    Mahmoud Naseri
    Ahmad Kamalianfar
    [J]. Applied Physics A, 2020, 126
  • [7] Polyol-mediated low-temperature synthesis of crystalline tungstate nanoparticles MWO4 (M = Mn, Fe, Co, Ni, Cu, Zn)
    Ungelenk, Jan
    Speldrich, Manfred
    Dronskowski, Richard
    Feldmann, Claus
    [J]. SOLID STATE SCIENCES, 2014, 31 : 62 - 69
  • [8] The role of annealing temperature and bio template (egg white) on the structural, morphological and magnetic properties of manganese substituted MFe2O4 (M=Zn, Cu, Ni, Co) nanoparticles
    Kumar, E. Ranjith
    Jayaprakash, R.
    Kumar, Sanjay
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2014, 351 : 70 - 75
  • [9] Synthesis and Some Physical Properties of Magnetite (Fe3O4) Nanoparticles
    El Ghandoor, H.
    Zidan, H. M.
    Khalil, Mostafa M. H.
    Ismail, M. I. M.
    [J]. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2012, 7 (06): : 5734 - 5745
  • [10] Structural and Magnetic Studies of Co0.6Zn0.4Fe2O4 Nanoferrite Synthesized by Solution Combustion Method
    Rani, Ritu
    Dhiman, Pooja
    Sharma, S. K.
    Singh, M.
    [J]. SYNTHESIS AND REACTIVITY IN INORGANIC METAL-ORGANIC AND NANO-METAL CHEMISTRY, 2012, 42 (03) : 360 - 363