Semiclassical asymptotics of eigenvalues for Dirac operators with magnetic fields

被引:0
作者
Suzuki, N
机构
[1] Anjo, Aichi 446-0062
关键词
Dirac operators; Schrodinger operators; magnetic fields; semiclassical asymptotics; eigenvalues;
D O I
10.1006/jmaa.2000.7146
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of the present paper is to investigate the semiclassical asymptotics of eigenvalues for the Dirac operator with magnetic fields. In the case of the Schrodinger operator with magnetic field. this problem was recently solved by Matsumoto. We show that the nth positive eigenvalue of the Dirac operator behaves like that of the associated Schrodinger operator via unitary equivalence of their spectral measures. (C) 2001 Academic Press.
引用
收藏
页码:406 / 413
页数:8
相关论文
共 5 条
[1]   SCHRODINGER AND DIRAC OPERATORS WITH SINGULAR POTENTIALS AND HYPERBOLIC EQUATIONS [J].
CHERNOFF, PR .
PACIFIC JOURNAL OF MATHEMATICS, 1977, 72 (02) :361-382
[2]   SEMICLASSICAL ASYMPTOTICS OF EIGENVALUES FOR SCHRODINGER-OPERATORS WITH MAGNETIC-FIELDS [J].
MATSUMOTO, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 129 (01) :168-190
[3]  
Simon B., 1983, Annales de l'Institut Henri Poincare, Section A (Physique Theorique), V38, P295
[4]  
Thaller B., 1992, Texts and Monographs in Physics
[5]  
WANG XP, 1985, ANN I H POINCARE-PHY, V43, P269