ADAPTIVE ROBUST CONTROL IN CONTINUOUS TIME

被引:1
作者
Bhudisaksang, Theerawat [1 ]
Cartea, Alvaro [1 ,2 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX1 2JD, England
[2] Oxford Man Inst Quantitat Finance, Oxford OX2 6ED, England
关键词
adaptive robust control; model uncertainty; stochastic control; time-consistency; dynamic programming; optimal acquisition; online learning; algorithmic trading; COVARIANCE; RISK;
D O I
10.1137/20M1336680
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a continuous-time version of the adaptive robust methodology introduced in T. R. Bielecki et al. [SIAM J. Control Optim., 57 (2019), pp. 925-946]. An agent solves a stochastic control problem where the underlying uncertainty follows a jump-diffusion process and the agent does not know the drift parameters of the process. The agent considers a set of alternative measures to make the control problem robust to model misspecification and employs a continuous-time estimator to learn the value of the unknown parameters to make the control problem adaptive to the arrival of new information. We use measurable selection theorems to prove the dynamic programming principle of the adaptive robust problem and show that the value function of the agent is characterized by a nonlinear partial differential equation. As an example, we derive the optimal adaptive robust strategy for an agent who acquires a large amount of shares in an order driven market and illustrate the financial performance of the execution strategy.
引用
收藏
页码:3912 / 3945
页数:34
相关论文
共 34 条
  • [1] [Anonymous], 1998, J MATH SYST ESTIM CO
  • [2] Parametric model risk and power plant valuation
    Bannoer, Karl
    Kiesel, Ruediger
    Nazarova, Anna
    Scherer, Matthias
    [J]. ENERGY ECONOMICS, 2016, 59 : 423 - 434
  • [3] ON THE ROBUST OPTIMAL STOPPING PROBLEM
    Bayraktar, Erhan
    Yao, Song
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (05) : 3135 - 3175
  • [4] Robust multivariate portfolio choice with stochastic covariance in the presence of ambiguity
    Bergen, V
    Escobar, M.
    Rubtsov, A.
    Zagst, R.
    [J]. QUANTITATIVE FINANCE, 2018, 18 (08) : 1265 - 1294
  • [5] Bertsekas D., 1996, Optimization and neural computation series, V27
  • [6] Bertsekas D. P., 1996, Stochastic Optimal Control: The Discrete-Time Case, V3
  • [7] The robust Merton problem of an ambiguity averse investor
    Biagini, Sara
    Pinar, Mustafa C.
    [J]. MATHEMATICS AND FINANCIAL ECONOMICS, 2017, 11 (01) : 1 - 24
  • [8] Recursive construction of confidence regions
    Bielecki, Tomasz
    Chen, Tao
    Cialenco, Igor
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 4674 - 4700
  • [9] ADAPTIVE ROBUST CONTROL UNDER MODEL UNCERTAINTY
    Bielecki, Tomasz R.
    Chen, Tao
    Cialenco, Igor
    Cousin, Areski
    Jeanblanc, Monique
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (02) : 925 - 946
  • [10] Time consistent dynamic risk processes
    Bion-Nadal, Jocelyne
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (02) : 633 - 654