Optimal control of stochastic prey-predator models

被引:15
作者
El-Gohary, A [1 ]
Bukhari, FA
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[2] King Saud Univ, Fac Sci, Dept Stat & OR, Riyadh 11451, Saudi Arabia
关键词
stochastic prey-predator models-optimal control-steady-states; Lyapunov-Bellman technique;
D O I
10.1016/S0096-3003(02)00592-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Optimal control of stochastic prey-predator models during infinite and finite time intervals is considered. Optimal feedback controlling functions are derived as non-linear functions of the densities of prey and predator populations using Lyapunov-Bellman technique. The densities of both prey and predator populations are obtained as functions of time. We will be concerned with time intervals of the control process and time dependence of the control functions. (C) 2002 Published by Elsevier Inc.
引用
收藏
页码:403 / 415
页数:13
相关论文
共 19 条
[1]  
AHMED A, 2000, MATH BIOL, V15, P257
[2]  
Aubin J. P., 1984, CELLINA DIFFERENTIAL
[3]   Predicting and preventing the emergence of antiviral drug resistance in HSV-2 [J].
Blower, SM ;
Porco, TC ;
Darby, G .
NATURE MEDICINE, 1998, 4 (06) :673-678
[4]   Lyapunov functions for Lotka-Volterra predator-prey models with optimal foraging behavior [J].
Boukal, DS ;
Krivan, V .
JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 39 (06) :493-517
[5]  
COLOMBO RM, 1993, IMA J MATH APPL MED, V10, P281
[6]  
DEIMING K, 1992, DIFFERENTIAL INCLUSI
[7]   Optimal control of the genital herpes epidemic [J].
El-Gohary, A .
CHAOS SOLITONS & FRACTALS, 2001, 12 (10) :1817-1822
[8]  
El-Gohary A., 2002, NONLIN DYNAM PSYCHOL, V6, P27
[9]  
HANS WL, 1990, VOLKSW SEM GOTT GERM
[10]   Optimal foraging and predator-prey dynamics, II [J].
Krivan, V ;
Sikder, A .
THEORETICAL POPULATION BIOLOGY, 1999, 55 (02) :111-126