On the local fractional LWR model in fractal traffic flows in the entropy condition

被引:18
作者
Guo, Yong-Mei [1 ]
Zhao, Yang [2 ]
Zhou, Yao-Ming [3 ]
Xiao, Zhong-Bin [1 ]
Yang, Xiao-Jun [4 ]
机构
[1] Yangzhou Univ, Coll Civil Sci & Engn, Yangzhou 225127, Jiangsu, Peoples R China
[2] Jiangmen Polytech, Dept Elect & Informat Technol, Jiangmen 529090, Peoples R China
[3] Beihang Univ, Sch Aeronaut Sci & Engn, Beijing 100191, Peoples R China
[4] China Univ Min & Technol, Dept Math & Mech, Xuzhou 221008, Peoples R China
关键词
traffic problems; series solutions; entropy; local fractional variational iteration method; local fractional calculus; DIFFUSION; EQUATIONS;
D O I
10.1002/mma.3808
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Entropy plays an important role in the simulation of traffic flow distribution. This paper studies the entropy condition for the Lighthill-Whitham-Richards model of the fractal traffic flows described by local fractional calculus. We also discuss the solutions of non-differentiability with graphs by using the local fractional variational iteration method. Copyright (C) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:6127 / 6132
页数:6
相关论文
共 25 条
[21]   An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives [J].
Yang, Xiao-Jun ;
Srivastava, H. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 29 (1-3) :499-504
[22]   Local fractional similarity solution for the diffusion equation defined on Cantor sets [J].
Yang, Xiao-Jun ;
Baleanu, Dumitru ;
Srivastava, H. M. .
APPLIED MATHEMATICS LETTERS, 2015, 47 :54-60
[23]  
Yang XJ, 2014, ROM J PHYS, V59, P36
[24]   Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives [J].
Yang, Xiao-Jun ;
Srivastava, H. M. ;
He, Ji-Huan ;
Baleanu, Dumitru .
PHYSICS LETTERS A, 2013, 377 (28-30) :1696-1700
[25]   FRACTAL HEAT CONDUCTION PROBLEM SOLVED BY LOCAL FRACTIONAL VARIATION ITERATION METHOD [J].
Yang, Xiao-Jun ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2013, 17 (02) :625-628