On the local fractional LWR model in fractal traffic flows in the entropy condition

被引:18
作者
Guo, Yong-Mei [1 ]
Zhao, Yang [2 ]
Zhou, Yao-Ming [3 ]
Xiao, Zhong-Bin [1 ]
Yang, Xiao-Jun [4 ]
机构
[1] Yangzhou Univ, Coll Civil Sci & Engn, Yangzhou 225127, Jiangsu, Peoples R China
[2] Jiangmen Polytech, Dept Elect & Informat Technol, Jiangmen 529090, Peoples R China
[3] Beihang Univ, Sch Aeronaut Sci & Engn, Beijing 100191, Peoples R China
[4] China Univ Min & Technol, Dept Math & Mech, Xuzhou 221008, Peoples R China
关键词
traffic problems; series solutions; entropy; local fractional variational iteration method; local fractional calculus; DIFFUSION; EQUATIONS;
D O I
10.1002/mma.3808
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Entropy plays an important role in the simulation of traffic flow distribution. This paper studies the entropy condition for the Lighthill-Whitham-Richards model of the fractal traffic flows described by local fractional calculus. We also discuss the solutions of non-differentiability with graphs by using the local fractional variational iteration method. Copyright (C) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:6127 / 6132
页数:6
相关论文
共 25 条
[1]  
[Anonymous], 2014, DISCRETE DYN NAT SOC, DOI DOI 10.1155/2014/934369
[2]  
[Anonymous], 2015, LOCAL FRACTIONAL INT
[3]   WHAT DOES THE ENTROPY CONDITION MEAN IN TRAFFIC FLOW THEORY [J].
ANSORGE, R .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 1990, 24 (02) :133-143
[4]   Efficient implementation of the shock-fitting algorithm for the Lighthill-Whitham-Richards traffic flow model [J].
Chen, Wenqin ;
Wong, S. C. ;
Shu, Chi-Wang .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 74 (04) :554-600
[5]   Multitask Oriented Virtual Resource Integration and Optimal Scheduling in Cloud Manufacturing [J].
Cheng, Zhen ;
Zhan, Dechen ;
Zhao, Xibin ;
Wan, Hai .
JOURNAL OF APPLIED MATHEMATICS, 2014,
[6]  
Dolbeault J., 2003, COMMUN MATH SCI, V1, P409
[7]   On non-entropy solutions of scalar conservation laws for traffic flow [J].
Gasser, I .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2003, 83 (02) :137-143
[8]   A MATHEMATICAL-MODEL OF TRAFFIC FLOW ON A NETWORK OF UNIDIRECTIONAL ROADS [J].
HOLDEN, H ;
RISEBRO, NH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1995, 26 (04) :999-1017
[9]   On entropy conditions and traffic flow models [J].
Knowles, James K. .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2008, 88 (01) :64-73
[10]  
LI M, 2013, MATH PROBL ENG, V2013, P1