Construction of self-reciprocal normal polynomials over finite fields of even characteristic

被引:3
作者
Alizadeh, Mahmood [1 ]
Mehrabi, Saeid [2 ]
机构
[1] Islamic Azad Univ, Ahvaz Branch, Dept Math, Coll Sci, Ahvaz, Iran
[2] Farhangian Univ, Dept Math, Tehran, Iran
关键词
Finite fields; normal polynomial; self-reciprocal;
D O I
10.3906/mat-1407-32
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a computationally simple and explicit construction of some sequences of normal polynomials and self-reciprocal normal polynomials over finite fields of even characteristic are presented.
引用
收藏
页码:259 / 267
页数:9
相关论文
共 13 条
[1]  
Alizadeh M, 2012, J MATH EXT, V6, P65
[2]  
[Anonymous], FINITE FIELDS APPL
[3]  
Cohen S. D., 1992, Designs, Codes and Cryptography, V2, P169, DOI 10.1007/BF00124895
[4]  
Gao S. H., 1993, Normal bases over finite fields
[5]   TRACE-ORTHOGONAL NORMAL BASES [J].
JUNGNICKEL, D .
DISCRETE APPLIED MATHEMATICS, 1993, 47 (03) :233-249
[6]   Recursive constructions of N-polynomials over GF(2s) [J].
Kyuregyan, Melsik K. .
DISCRETE APPLIED MATHEMATICS, 2008, 156 (09) :1554-1559
[7]   Iterated constructions of irreducible polynomials over finite fields with linearly independent roots [J].
Kyuregyan, MK .
FINITE FIELDS AND THEIR APPLICATIONS, 2004, 10 (03) :323-341
[8]  
McNay G, 1995, TOPICS FINITE FIELDS
[9]  
Menezes A.J., 1993, APPL FINITE FIELDS
[10]  
Meyn H., 1995, Designs, Codes and Cryptography, V6, P107, DOI 10.1007/BF01398009