Lang's conjecture and sharp height estimates for the elliptic curves y2 = x3 + b

被引:2
|
作者
Voutier, Paul [1 ]
Yabuta, Minoru [1 ]
机构
[1] Senri High Sch, 17-1 2 Chome, Suita, Osaka 5650861, Japan
关键词
elliptic curve; canonical height; Lang's conjecture; PRIMITIVE DIVISORS; CANONICAL HEIGHT; DIVISIBILITY SEQUENCES; INTEGRAL POINTS; TWISTS; DIFFERENCE; BOUNDS;
D O I
10.4064/aa7761-2-2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:197 / 224
页数:28
相关论文
共 42 条
  • [21] On the elliptic curve y2 = x3 −2rDx and factoring integers
    XiuMei Li
    JinXiang Zeng
    Science China Mathematics, 2014, 57 : 719 - 728
  • [22] On the rational solutions of y2 = x3
    Sharma, Richa
    Bhatter, Sanjay
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2021, 27 (03) : 130 - 142
  • [23] The upper bound estimate of the number of integer points on elliptic curves y2 = x3 + p2rx
    Zhang, Jin
    Li, Xiaoxue
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [24] Integral Points on the Elliptic Curve y2 = x3 − 4p2x
    Hai Yang
    Ruiqin Fu
    Czechoslovak Mathematical Journal, 2019, 69 : 853 - 862
  • [25] The Mordell-Weil bases for the elliptic curve of the form y2 = x3 - m2x plus n2
    Fujita, Yasutsugu
    Nara, Tadahisa
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2018, 92 (1-2): : 79 - 99
  • [26] On elliptic curves y2=x3-n2x with rank zero
    Feng, KQ
    Xiong, MS
    JOURNAL OF NUMBER THEORY, 2004, 109 (01) : 1 - 26
  • [27] The integral points on elliptic curves y2 = x3 + (36n2 − 9)x − 2(36n2 − 5)
    Hai Yang
    Ruiqin Fu
    Czechoslovak Mathematical Journal, 2013, 63 : 375 - 383
  • [28] Sharp bounds for the number of integral points on y2 = x3 ± 2tx2 + tpx
    Lin, Nuan
    Walsh, P. Gary
    Yuan, Pingzhi
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2021, 98 (3-4): : 455 - 465
  • [29] Integral points on the elliptic curve Epq: y2 = x3 + (pq − 12) x − 2(pq − 8)
    Teng Cheng
    Qingzhong Ji
    Hourong Qin
    Indian Journal of Pure and Applied Mathematics, 2019, 50 : 343 - 352
  • [30] Integer points on the curve Y2 = X3 ± pkX
    Draziotis, Konstantinos A.
    MATHEMATICS OF COMPUTATION, 2006, 75 (255) : 1493 - 1505