A weak Cramer condition and application to Edgeworth expansions

被引:16
作者
Angst, Jurgen [1 ]
Poly, Guillaume [1 ]
机构
[1] Univ Rennes 1, IRMAR, Rennes, France
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2017年 / 22卷
关键词
Cramer condition; small ball estimate; Edgeworth expansion; ASYMPTOTIC EXPANSIONS; SUMS;
D O I
10.1214/17-EJP77
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a new, weak Cramer condition on the characteristic function of a random vector which does not only hold for all continuous distributions but also for discrete (non-lattice) ones in a generic sense. We then prove that the normalized sum of independent random vectors satisfying this new condition automatically verifies some small ball estimates and admits a valid Edgeworth expansion for the Kolmogorov metric. The latter results therefore extend the well known theory of Edgeworth expansion under the standard Cramer condition, to distributions that are purely discrete.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 22 条
[1]  
[Anonymous], 2004, TEOR VEROYATN PRIMEN
[2]   Asymptotic development for the CLT in total variation distance [J].
Bally, Vlad ;
Caramellino, Lucia .
BERNOULLI, 2016, 22 (04) :2442-2485
[3]   The accuracy of the Gaussian approximation to the sum of independent variates [J].
Berry, Andrew C. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1941, 49 (1-3) :122-136
[4]  
Bhattacharya R.N., 1986, Normal Approximation and Asymptotic Expansions
[5]   Fisher information and the central limit theorem [J].
Bobkov, Sergey G. ;
Chistyakov, Gennadiy P. ;
Goetze, Friedrich .
PROBABILITY THEORY AND RELATED FIELDS, 2014, 159 (1-2) :1-59
[6]  
Bombieri Enrico., 2006, Heights in Diophantine Geometry. New Mathematical Monographs, DOI DOI 10.1017/CBO9780511542879
[7]  
Coutin L., 2014, Communications on Stochastic Analysis, V8, P155, DOI 10.31390/cosa.8.2.02
[8]  
Cramér H, 1928, SKAND AKTUARIETIDSKR, V11, P13
[9]   The generalised law of error, or law of great numbers. [J].
Edgeworth, FY .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY, 1906, 69 :497-539
[10]  
Götze F, 2006, FRONTIERS IN STATISTICS: DEDICATED TO PETER JOHN BICKEL IN HONOR OF HIS 65TH BIRTHDAY, P257, DOI 10.1142/9781860948886_0012