Discrimination of Li-ion batteries based on Hamming network using discharging-charging voltage pattern recognition for improved state-of-charge estimation
被引:53
作者:
Kim, Jonghoon
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Power Elect Syst Lab, Sch Elect Engn & Comp Sci, Seoul 151744, South KoreaSeoul Natl Univ, Power Elect Syst Lab, Sch Elect Engn & Comp Sci, Seoul 151744, South Korea
Kim, Jonghoon
[1
]
Lee, Seongjun
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Power Elect Syst Lab, Sch Elect Engn & Comp Sci, Seoul 151744, South KoreaSeoul Natl Univ, Power Elect Syst Lab, Sch Elect Engn & Comp Sci, Seoul 151744, South Korea
Lee, Seongjun
[1
]
Cho, B. H.
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Power Elect Syst Lab, Sch Elect Engn & Comp Sci, Seoul 151744, South KoreaSeoul Natl Univ, Power Elect Syst Lab, Sch Elect Engn & Comp Sci, Seoul 151744, South Korea
Cho, B. H.
[1
]
机构:
[1] Seoul Natl Univ, Power Elect Syst Lab, Sch Elect Engn & Comp Sci, Seoul 151744, South Korea
Hamming network;
Pattern recognition;
State of charge (SoC);
Lumped parameter battery model;
Li ion battery;
OPEN-CIRCUIT VOLTAGE;
AGING MECHANISMS;
LEAD-ACID;
CAPACITY FADE;
POWER FADE;
PART I;
IMPEDANCE;
CELLS;
TEMPERATURE;
PERFORMANCE;
D O I:
10.1016/j.jpowsour.2010.08.119
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Differences in electrochemical characteristics among Li-ion batteries and factors such as temperature and ageing result in erroneous state-of-charge (SoC) estimation when using the existing extended Kalman filter (EKF) algorithm This study presents an application of the Hamming neural network to the identification of suitable battery model parameters for improved SoC estimation The discharging-charging voltage (DCV) patterns of ten fresh la-ion batteries are measured together with the battery parameters as representative patterns Through statistical analysis the Hamming network is applied for identification of the representative DCV pattern that matches most closely of the pattern of the arbitrary battery to be measured Model parameters of the representative battery are then applied to estimate the SoC of the arbitrary battery using the EKF This avoids the need for repeated parameter measurement Using model parameters selected by the proposed method all SoC estimates (off-line and on-line) based on the EKF are within +/-5% of the values estimated by ampere-hour counting (C) 2010 Elsevier B V AB rights reserved
机构:
Univ No British Columbia, Dept Comp Sci, Prince George, BC V2N 4Z9, CanadaUniv No British Columbia, Dept Comp Sci, Prince George, BC V2N 4Z9, Canada
Chen, Liang
;
Tokuda, Naoyuki
论文数: 0引用数: 0
h-index: 0
机构:Univ No British Columbia, Dept Comp Sci, Prince George, BC V2N 4Z9, Canada
Tokuda, Naoyuki
;
Nagai, Akira
论文数: 0引用数: 0
h-index: 0
机构:Univ No British Columbia, Dept Comp Sci, Prince George, BC V2N 4Z9, Canada
机构:
Univ No British Columbia, Dept Comp Sci, Prince George, BC V2N 4Z9, CanadaUniv No British Columbia, Dept Comp Sci, Prince George, BC V2N 4Z9, Canada
Chen, Liang
;
Tokuda, Naoyuki
论文数: 0引用数: 0
h-index: 0
机构:Univ No British Columbia, Dept Comp Sci, Prince George, BC V2N 4Z9, Canada
Tokuda, Naoyuki
;
Nagai, Akira
论文数: 0引用数: 0
h-index: 0
机构:Univ No British Columbia, Dept Comp Sci, Prince George, BC V2N 4Z9, Canada