Sub-Riemannian calculus on hypersurfaces in Carnot groups

被引:84
作者
Danielli, D.
Garofalo, N. [1 ]
Nhieu, D. M.
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Georgetown Univ, Dept Math, Washington, DC 20057 USA
基金
美国国家科学基金会;
关键词
horizontal Levi-Civita connection; horizontal second fundamental form; H-mean curvature; intrinsic integration by parts; first and second variation of the horizontal perimeter;
D O I
10.1016/j.aim.2007.04.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a sub-Riemannian calculus for hypersurfaces in graded nilpotent Lie groups. We introduce an appropriate geometric framework, such as horizontal Levi-Civita connection, second fundamental form, and horizontal Laplace-Beltrarm operator. We analyze the relevant minimal surfaces and prove some basic integration by parts formulas. Using the latter we establish general first and second variation formulas for the horizontal perimeter in the Heisenberg group. Such formulas play a fundamental role in the sub-Riemannian Bernstein problem. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:292 / 378
页数:87
相关论文
共 99 条
[1]  
ADESI VB, IN PRESS CALC VAR PA
[2]  
ALBROSIO L, 2006, J GEOM ANAL, V16, P187
[3]  
[Anonymous], 2003, CHICAGO LECT MATH
[4]  
[Anonymous], AM MATH SOC
[5]  
Balogh ZM, 2003, J REINE ANGEW MATH, V564, P63
[6]  
Bellaiche A., 1996, Sub-Riemannian Geometry, Progress in Mathematics, P1, DOI [10.1007/978-3-0348-9210-0, DOI 10.1007/978-3-0348-9210-0, 10.1007/978-3-0348-9210-0\\1]
[7]   A PRIORI MAJORATION RELATING TO NON-PARAMETRICAL MINIMAL HYPERSURFACES [J].
BOMBIERI, E ;
DEGIORGI, E ;
MIRANDA, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1969, 32 (04) :255-&
[8]  
BONK M, 2005, HORIZONTAL MEAN CURV
[9]  
Boothby W. M., 1975, An introduction to differentiable manifolds and Riemannian geometry
[10]  
Capogna L., 1994, COMMUN ANAL GEOM, V2, P201