Hybrid nanochannel membrane based on polymer/MOF for high-performance salinity gradient power generation

被引:169
|
作者
Li, Ruirui [1 ]
Jiang, Jiaqiao [1 ]
Liu, Qingqing [1 ]
Xie, Zhiqiang [1 ]
Zhai, Jin [1 ]
机构
[1] Beihang Univ, Sch Chem, Beijing Adv Innovat Ctr Biomed Engn,Minist Educ, Key Lab Bioinspired Smart Interfacial Sci & Techn, Beijing 100191, Peoples R China
关键词
Polymer/MOF; Hybrid nanochannel membrane; Cation selectivity; Salinity gradient power generation; METAL-ORGANIC FRAMEWORK; OSMOTIC ENERGY-CONVERSION; REVERSE ELECTRODIALYSIS; CONICAL NANOPORES; CATION-EXCHANGE; SINGLE; TRANSPORT; ULTRATHIN; WATER; MOFS;
D O I
10.1016/j.nanoen.2018.09.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Harvesting electric power from the salinity gradient has drawn the eyes of researchers in recent years, because it is sustainable and environmentally benign. Nanofluidic channels are regarded as a promising platform to utilize this clean energy, due to their unique fluidic transport properties in the nanometer scale. Therefore, technological breakthroughs are expected in exploitation of new types of nanofluidic channel membranes. Polymer/MOF hybrid membranes combine the advantages of abundant pore channels from MOF and high density of functional groups from polymers, which make them competitive membrane materials for the control of nanofluidic transport. Herein, we developed a series of hybrid nanochannel membranes constructed by polystyrene sulfonate (PSS)/MOF composites and anodic aluminum oxide (AAO). The resultant membranes feature geometrical, chemical, and electrostatic asymmetries. Through adjusting the PSS content in the hybrid nanochannel membranes, the optimized membrane exhibits outstanding cation selectivity and can rectify the ion current with a ratio of 98 in 10 mM KCl solution. After integrating it into a salinity-gradient-driven device, a high power density of 2.87 W/m(2) is achieved, which shows great promise for practical applications. This work paves the way for the use of polymer/MOF composites in nanofluidic systems and boosts their applications in energy conversion areas.
引用
收藏
页码:643 / 649
页数:7
相关论文
共 50 条
  • [1] High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation
    Gao, Jun
    Guo, Wei
    Feng, Dan
    Wang, Huanting
    Zhao, Dongyuan
    Jiang, Lei
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (35) : 12265 - 12272
  • [2] High-performance ionic diode membrane for salinity gradient power generation
    Guo, W. (wguo@iccas.ac.cn), 1600, American Chemical Society (136):
  • [3] Engineered PES/SPES nanochannel membrane for salinity gradient power generation
    Huang, Xiaodong
    Zhang, Zhen
    Kong, Xiang-Yu
    Sun, Yue
    Zhu, Congcong
    Liu, Pei
    Pang, Jinhui
    Jiang, Lei
    Wen, Liping
    NANO ENERGY, 2019, 59 : 354 - 362
  • [4] Engineered Sulfonated Polyether Sulfone Nanochannel Membranes for Salinity Gradient Power Generation
    Huang, Xiaodong
    Pang, Jinhui
    Zhou, Teng
    Jiang, Lei
    Wen, Liping
    ACS APPLIED POLYMER MATERIALS, 2021, 3 (01): : 485 - 493
  • [5] Advanced integrated nanochannel membrane with oppositely-charged bacterial cellulose and functionalized polymer for efficient salinity gradient energy generation
    Li, Zhouyue
    Mehraj, Ahmad
    Sun, Zhe
    Fu, Wenkai
    Wang, Sha
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 277
  • [6] Densely charged polyelectrolyte-stuffed nanochannel arrays for power generation from salinity gradient
    Kwak, Su Hong
    Kwon, Seung-Ryong
    Baek, Seol
    Lim, Seung-Min
    Joo, Young-Chang
    Chung, Taek Dong
    SCIENTIFIC REPORTS, 2016, 6
  • [7] Gap Confinement Effect of a Tandem Nanochannel System and Its Application in Salinity Gradient Power Generation
    Wang, Yuting
    Chen, Huaxiang
    Zhai, Jin
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (34) : 41159 - 41168
  • [8] Densely charged polyelectrolyte-stuffed nanochannel arrays for power generation from salinity gradient
    Su Hong Kwak
    Seung-Ryong Kwon
    Seol Baek
    Seung-Min Lim
    Young-Chang Joo
    Taek Dong Chung
    Scientific Reports, 6
  • [9] Construction of a Liquid Membrane Cell for Power Generation Based on Salinity Gradient Energy Conversion
    Yamada, Yusuke
    Kitazumi, Yuki
    Kano, Kenji
    Shirai, Osamu
    CHEMISTRY LETTERS, 2020, 49 (09) : 1081 - 1083
  • [10] Engineered cellulose nanofibers membranes with oppositely charge characteristics for high-performance salinity gradient power generation by reverse electrodialysis
    Wang, Sha
    Sun, Zhe
    Ahmad, Mehraj
    Fu, Wenkai
    Gao, Zongxia
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 253