Enhancement of prostate cancer diagnosis by machine learning techniques: an algorithm development and validation study

被引:33
作者
Chiu, Peter Ka-Fung [1 ]
Shen, Xiao [2 ]
Wang, Guanjin [2 ]
Ho, Cho-Lik [2 ]
Leung, Chi-Ho [1 ]
Ng, Chi-Fai [1 ]
Choi, Kup-Sze [2 ]
Teoh, Jeremy Yuen-Chun [1 ]
机构
[1] Chinese Univ Hong Kong, SH Ho Urol Ctr, Dept Surg, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Ctr Smart Hlth, Sch Nursing, Hong Kong, Peoples R China
关键词
DIGITAL RECTAL EXAMINATION; RISK CALCULATOR; PREDICTION; BIOPSY; ERSPC;
D O I
10.1038/s41391-021-00429-x
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background To investigate the value of machine learning(ML) in enhancing prostate cancer(PCa) diagnosis. Methods Consecutive systematic prostate biopsies performed from Jan 2003-June 2017 were used as the training cohort, and prospective biopsies performed from July 2017-November 2019 were used as validation cohort. Men were included if PSA was 0.4-50 ng/mL, and information of digital rectal examination (DRE), Transrectal ultrasound(TRUS) prostate volume, TRUS abnormality were known. Clinically significant PCa(csPCa) was defined as Gleason 3 + 4 or above cancers. Area-under-curve (AUC) of receiver-operating characteristics (ROC) was compared between PSA, PSA density, European Randomized Study of Screening for Prostate Cancer (ERSPC) risk calculator (ERSPC-RC), and various ML techniques using PSA, DRE and TRUS information. ML techniques used included XGBoost, LightGBM, Catboost, Support vector machine (SVM), Logistic regression (LR), and Random Forest (RF), where cost sensitive learning was applied. Results Training and validation cohorts included 3881 and 778 consecutive men, respectively. RF model performed better than other ML techniques and PSA, PSA density and ERSPC-RC for prediction of PCa or csPCa in the validation cohort. In csPCa prediction, AUC of PSA, PSA density, ERSPC-RC and RF was 0.71, 0.80, 0.83 and 0.88 respectively. At 90-95% sensitivity for csPCa, RF model achieved a negative predictive value (NPV) of 97.5-98.0% and avoided 38.3-52.2% unnecessary biopsies. Decision curve analyses (DCA) showed RF model provided net clinical benefit over PSA, PSA density and ERSPC-RC. Conclusion By using the same clinical parameters, ML techniques performed better than ERSPC-RC or PSA density in csPCa predictions, and could avoid up to 50% unnecessary biopsies.
引用
收藏
页码:672 / 676
页数:5
相关论文
共 26 条
[1]   Evaluating the PCPT risk calculator in ten international biopsy cohorts: results from the Prostate Biopsy Collaborative Group [J].
Ankerst, Donna P. ;
Boeck, Andreas ;
Freedland, Stephen J. ;
Thompson, Ian M. ;
Cronin, Angel M. ;
Roobol, Monique J. ;
Hugosson, Jonas ;
Jones, J. Stephen ;
Kattan, Michael W. ;
Klein, Eric A. ;
Hamdy, Freddie ;
Neal, David ;
Donovan, Jenny ;
Parekh, Dipen J. ;
Klocker, Helmut ;
Horninger, Wolfgang ;
Benchikh, Amine ;
Salama, Gilles ;
Villers, Arnauld ;
Moreira, Daniel M. ;
Schroder, Fritz H. ;
Lilja, Hans ;
Vickers, Andrew J. .
WORLD JOURNAL OF UROLOGY, 2012, 30 (02) :181-187
[2]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[3]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[4]   Adaptation and external validation of the European randomised study of screening for prostate cancer risk calculator for the Chinese population [J].
Chiu, P. K. ;
Roobol, M. J. ;
Nieboer, D. ;
Teoh, J. Y. ;
Yuen, S. K. ;
Hou, S. M. ;
Yiu, M. K. ;
Ng, C. F. .
PROSTATE CANCER AND PROSTATIC DISEASES, 2017, 20 (01) :99-104
[5]   Prostate health index (PHI) and prostate-specific antigen (PSA) predictive models for prostate cancer in the Chinese population and the role of digital rectal examination-estimated prostate volume [J].
Chiu, Peter K. F. ;
Roobol, Monique J. ;
Teoh, Jeremy Y. ;
Lee, Wai-Man ;
Yip, Siu-Ying ;
Hou, See-Ming ;
Bangma, Chris H. ;
Ng, Chi-Fai .
INTERNATIONAL UROLOGY AND NEPHROLOGY, 2016, 48 (10) :1631-1637
[6]   A Multicentre Evaluation of the Role of the Prostate Health Index (PHI) in Regions with Differing Prevalence of Prostate Cancer: Adjustment of PHI Reference Ranges is Needed for European and Asian Settings [J].
Chiu, Peter K-F ;
Ng, Chi-Fai ;
Semjonow, Axel ;
Zhu, Yao ;
Vincendeau, Sibastien ;
Houlgatte, Alain ;
Lazzeri, Massimo ;
Guazzoni, Giorgio ;
Stephan, Carsten ;
Haese, Alexander ;
Bruijne, Ilse ;
Teoh, Jeremy Yuen-Chun ;
Leung, Chi Ho ;
Casale, Paola ;
Chiang, Chih Hung ;
Tan, Lincoln Guan-Lim ;
Chiong, Edmund ;
Huang, Chao Yuan ;
Wu, Hsi Chin ;
Nieboer, Daan ;
Ye, Ding-Wei ;
Bangma, Chris H. ;
Roobol, Monique J. .
EUROPEAN UROLOGY, 2019, 75 (04) :558-561
[7]   Role of PSA density in diagnosis of prostate cancer in obese men [J].
Chiu, Peter Ka-Fung ;
Teoh, Jeremy Yuen-Chun ;
Chan, Samson Yun-Sang ;
Chu, Peggy Sau-Kwan ;
Man, Chi-Wai ;
Hou, See-Ming ;
Ng, Chi-Fai .
INTERNATIONAL UROLOGY AND NEPHROLOGY, 2014, 46 (12) :2251-2254
[8]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[9]  
Dorogush A.V., 2018, ARXIV
[10]   A 16-yr Follow-up of the European Randomized study of Screening for Prostate Cancer [J].
Hugosson, Jonas ;
Roobol, Monique J. ;
Mansson, Marianne ;
Tammela, Teuvo L. J. ;
Zappa, Marco ;
Nelen, Vera ;
Kwiatkowski, Maciej ;
Lujan, Marcos ;
Carlsson, Sigrid, V ;
Talala, Kirsi M. ;
Lilja, Hans ;
Denis, Louis J. ;
Recker, Franz ;
Paez, Alvaro ;
Puliti, Donella ;
Villers, Arnauld ;
Rebillard, Xavier ;
Kilpelainen, Tuomas P. ;
Stenman, Ulf H. ;
Godtman, Rebecka Arnsrud ;
Kollberg, Karin Stinesen ;
Moss, Sue M. ;
Kujala, Paula ;
Taari, Kimmo ;
Huber, Andreas ;
van der Kwast, Theodorus ;
Heijnsdijk, Eveline A. ;
Bangma, Chris ;
De Koning, Harry J. ;
Schroder, Fritz H. ;
Auvinen, Anssi .
EUROPEAN UROLOGY, 2019, 76 (01) :43-51