A classification and a non-existence theorem for conformally flat hypersurfaces in Euclidean 4-space

被引:5
作者
Suyama, Y [1 ]
机构
[1] Fukuoka Univ, Dept Math Appl, Fukuoka 8140180, Japan
关键词
conformal flatness; generic hypersurface; conformal transformation; conformal invariant;
D O I
10.1142/S0129167X0500276X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study generic conformally flat hypersurfaces in the Euclidean 4-space satisfying a certain condition on the conformal class of the first fundamental form. We first classify such hypersurfaces by determining all conformal-equivalence classes of generic conformally flat hypersurfaces satisfying the condition. Next, as an application of the classification theorem, we give some examples of flat Riemannian metrics which are not conformal to the first fundamental form of any generic conformally flat hypersurface. These flat Riemannian metrics seem to provide counter-examples to Hertrich-Jeromin's claim [3, 5].
引用
收藏
页码:53 / 85
页数:33
相关论文
共 12 条
  • [1] CARTAN E, OEUVRES COMPLETES, V1, P221
  • [2] Curved flats in symmetric spaces
    Ferus, D
    Pedit, F
    [J]. MANUSCRIPTA MATHEMATICA, 1996, 91 (04) : 445 - 454
  • [3] Hertrich-Jeromin U., 1994, BEITR ALG GEOM, V35, P315
  • [4] HERTRICHJEROMIN U, 1994, THESIS BERLIN
  • [5] HERTRICHJEROMIN U, 2003, LONDON MATH SOC LECT, V300
  • [6] Lafontaine J., 1988, CONFORMAL GEOMETRY, VE12, P65, DOI DOI 10.1007/978-3-322-90616-8_3
  • [7] Explicit representation of compact conformally flat hypersurfaces
    Suyama, Y
    [J]. TOHOKU MATHEMATICAL JOURNAL, 1998, 50 (02) : 179 - 196
  • [8] Suyama Y, 2000, NAGOYA MATH J, V158, P1
  • [9] SUYAMA Y, IN PRESS OSAKA J MAT
  • [10] SUYAMA Y, 2002, RIMS KOKYUROKU, V1292, P186