A direct method of moving planes for the fractional Laplacian
被引:314
作者:
Chen, Wenxiong
论文数: 0引用数: 0
h-index: 0
机构:
Yeshiva Univ, Dept Math Sci, New York, NY 10033 USAYeshiva Univ, Dept Math Sci, New York, NY 10033 USA
Chen, Wenxiong
[1
]
Li, Congming
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Math Sci, Inst Nat Sci, Shanghai, Peoples R China
Shanghai Jiao Tong Univ, MOE LSC, Shanghai, Peoples R China
Univ Colorado, Dept Appl Math, Boulder, CO 80309 USAYeshiva Univ, Dept Math Sci, New York, NY 10033 USA
Li, Congming
[2
,3
,4
]
Li, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Yeshiva Univ, Dept Math Sci, New York, NY 10033 USAYeshiva Univ, Dept Math Sci, New York, NY 10033 USA
Li, Yan
[1
]
机构:
[1] Yeshiva Univ, Dept Math Sci, New York, NY 10033 USA
[2] Shanghai Jiao Tong Univ, Sch Math Sci, Inst Nat Sci, Shanghai, Peoples R China
[3] Shanghai Jiao Tong Univ, MOE LSC, Shanghai, Peoples R China
[4] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
The fractional Laplacian;
Maximum principles for anti-symmetric functions;
Narrow region principle;
Decay at infinity;
Method of moving planes;
Radial symmetry;
Monotonicity;
Non-existence of positive solutions;
LIOUVILLE TYPE THEOREM;
INTEGRAL-EQUATION;
ELLIPTIC PROBLEM;
SYMMETRY;
REGULARITY;
CLASSIFICATION;
D O I:
10.1016/j.aim.2016.11.038
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we develop a direct method of moving planes for the fractional Laplacian. Instead of using the conventional extension method introduced by Caffarelli and Silvestre, we work directly on the non-local operator. Using the integral defining the fractional Laplacian, by an elementary approach, we first obtain the key ingredients needed in the method of moving planes either in a bounded domain or in the whole space, such as strong maximum principles for anti-symmetric functions, narrow region principles, and decay at infinity. Then, using simple examples, semi-linear equations involving the fractional Laplacian, we illustrate how this new method of moving planes can be employed to obtain symmetry and non-existence of positive solutions. We firmly believe that the ideas and methods introduced here can be conveniently applied to study a variety of nonlocal problems with more general operators and more general nonlinearities. (C) 2016 Elsevier Inc. All rights reserved.
机构:
Henan Normal Univ, Coll Math & Informat Sci, Changsha, Peoples R China
Yeshiva Univ, Dept Math Sci, New York, NY 10033 USAHenan Normal Univ, Coll Math & Informat Sci, Changsha, Peoples R China
Chen, Wenxiong
Zhu, Jiuyi
论文数: 0引用数: 0
h-index: 0
机构:
Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USAHenan Normal Univ, Coll Math & Informat Sci, Changsha, Peoples R China
机构:
Yeshiva Univ, Dept Math, New York, NY 10033 USAYeshiva Univ, Dept Math, New York, NY 10033 USA
Chen, Wenxiong
Fang, Yanqin
论文数: 0引用数: 0
h-index: 0
机构:
Yeshiva Univ, Dept Math, New York, NY 10033 USA
Hunan Univ, Sch Math, Changsha 410082, Hunan, Peoples R ChinaYeshiva Univ, Dept Math, New York, NY 10033 USA
Fang, Yanqin
Yang, Ray
论文数: 0引用数: 0
h-index: 0
机构:
Courant Inst Math Sci, Dept Math, New York, NY 10012 USAYeshiva Univ, Dept Math, New York, NY 10033 USA
机构:
Henan Normal Univ, Coll Math & Informat Sci, Changsha, Peoples R China
Yeshiva Univ, Dept Math Sci, New York, NY 10033 USAHenan Normal Univ, Coll Math & Informat Sci, Changsha, Peoples R China
Chen, Wenxiong
Zhu, Jiuyi
论文数: 0引用数: 0
h-index: 0
机构:
Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USAHenan Normal Univ, Coll Math & Informat Sci, Changsha, Peoples R China
机构:
Yeshiva Univ, Dept Math, New York, NY 10033 USAYeshiva Univ, Dept Math, New York, NY 10033 USA
Chen, Wenxiong
Fang, Yanqin
论文数: 0引用数: 0
h-index: 0
机构:
Yeshiva Univ, Dept Math, New York, NY 10033 USA
Hunan Univ, Sch Math, Changsha 410082, Hunan, Peoples R ChinaYeshiva Univ, Dept Math, New York, NY 10033 USA
Fang, Yanqin
Yang, Ray
论文数: 0引用数: 0
h-index: 0
机构:
Courant Inst Math Sci, Dept Math, New York, NY 10012 USAYeshiva Univ, Dept Math, New York, NY 10033 USA