Position error compensation of the multi-purpose overload robot in nuclear power plants

被引:18
作者
Qin, Guodong [1 ]
Ji, Aihong [1 ]
Cheng, Yong [2 ]
Zhao, Wenlong [2 ]
Pan, Hongtao [2 ]
Shi, Shanshuang [2 ]
Song, Yuntao [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mech & Elect Engn, Nanjing 210016, Peoples R China
[2] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-purpose overload robot; Remote handling system; Levenberg-marquardt; Parameter identification;
D O I
10.1016/j.net.2021.02.005
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The Multi-Purpose Overload Robot (CMOR) is a key subsystem of China Fusion Engineering Test Reactor (CFETR) remote handling system. Due to the long cantilever and large loads of the CMOR, it has a large rigid-flexible coupling deformation that results in a poor position accuracy of the end-effector. In this study, based on the Levenberg-Marquardt algorithm, the spatial grid, and the linearized variable load principle, a variable parameter compensation model was designed to identify the parameters of the CMOR's kinematics models under different loads and at different poses so as to improve the trajectory tracking accuracy. Finally, through Adams-MATLAB/Simulink, the trajectory tracking accuracy of the CMOR's rigid-flexible coupling model was analyzed, and the end position error exceeded 0.1 m. After the variable parameter compensation model, the average position error of the end-effector became less than 0.02 m, which provides a reference for CMOR error compensation. (c) 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:2708 / 2715
页数:8
相关论文
共 18 条
[1]   Multi-purpose deployer for ITER in-vessel maintenance [J].
Choi, Chang-Hwan ;
Tesini, Alessandro ;
Subramanian, Rajendran ;
Rolfe, Alan ;
Mills, Simon ;
Scott, Robin ;
Froud, Tim ;
Haist, Bernhard ;
McCarron, Eddie .
FUSION ENGINEERING AND DESIGN, 2015, 98-99 :1448-1452
[2]  
Cibicik A, 2020, MECH MACH THEORY, V43, P1
[3]   Master-slave control of a teleoperated anthropomorphic robotic arm with gripping force sensing [J].
Gupta, Gourab Sen ;
Mukhopadhyay, Subhas Chandra ;
Messom, Christopher H. ;
Demidenko, Serge N. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2006, 55 (06) :2136-2145
[4]   Remote handling preparations for JET EP2 shutdown [J].
Haist, B. ;
Mills, S. ;
Loving, A. .
FUSION ENGINEERING AND DESIGN, 2009, 84 (2-6) :875-879
[5]   IMPROVING THE ABSOLUTE POSITIONING ACCURACY OF ROBOT MANIPULATORS [J].
HAYATI, S ;
MIRMIRANI, M .
JOURNAL OF ROBOTIC SYSTEMS, 1985, 2 (04) :397-413
[6]  
Hong Peng, 2015, Robot, V37, P327, DOI 10.13973/j.cnki.robot.2015.0327
[7]  
Huang L, 2017, AM J TRANSL RES, V9, P1
[8]   Kinematic calibration of a 6-DOF hybrid robot by considering multicollinearity in the identification Jacobian [J].
Huang, Tian ;
Zhao, Dong ;
Yin, Fuwen ;
Tian, Wenjie ;
Chetwynd, Derek G. .
MECHANISM AND MACHINE THEORY, 2019, 131 :371-384
[9]   Conceptual design of the HCCB blanket system integration for CFETR [J].
Lei, Mingzhun ;
Song, Yuntao ;
Liu, Sumei ;
Lu, Kun ;
Xu, Shuling ;
Xu, Kun .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (08) :3306-3312
[10]  
[刘广瑞 Liu Guangrui], 2014, [中国机械工程, China Mechanical Engineering], V25, P480