Stereoscopic hyperspectral remote sensing of the atmospheric environment: Innovation and prospects

被引:51
作者
Liu, Cheng [1 ,2 ,3 ,4 ]
Xing, Chengzhi [2 ]
Hu, Qihou [2 ]
Wang, Shanshan [5 ]
Zhao, Shaohua [6 ]
Gao, Meng [7 ]
机构
[1] Univ Sci & Technol China, Dept Precis Machinery & Precis Instrumentat, Hefei 230036, Peoples R China
[2] Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Hefei Inst Phys Sci, Key Lab Environm Opt & Technol, Hefei 230031, Peoples R China
[3] Chinese Acad Sci, Ctr Excellence Reg Atmospher Environm, Inst Urban Environm, Xiamen 361021, Peoples R China
[4] Univ Sci & Technol China, Key Lab Precis Sci Instrumentat Anhui Higher Educ, Hefei 230026, Peoples R China
[5] Fudan Univ, Dept Environm Sci & Engn, Shanghai Key Lab Atmospher Particle Pollut & Prev, Shanghai 200433, Peoples R China
[6] Minist Ecol & Environm, Satellite Applicat Ctr Ecol & Environm, State Environm Protect Key Lab Satellite Remote S, Beijing 100094, Peoples R China
[7] Hong Kong Baptist Univ, Dept Geog, State Key Lab Environm & Biol Anal, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Stereoscopic remote sensing; Satellite; Unmanned aerial vehicle; Machine learning; Active remote sensing; MAX-DOAS OBSERVATIONS; VERTICAL-DISTRIBUTION PATTERNS; PROFILE RETRIEVAL ALGORITHM; AEROSOL OPTICAL-PROPERTIES; TROPOSPHERIC NO2 COLUMNS; NORTH CHINA PLAIN; AIR-QUALITY; ULTRALIGHT AIRCRAFT; REGIONAL TRANSPORT; SATELLITE-OBSERVATIONS;
D O I
10.1016/j.earscirev.2022.103958
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Traditional ground-based air sampling measurements of air quality have blind monitoring areas in the junctions between provinces, cities and urban and rural areas, and they lack the ability of vertical monitoring. Stereoscopic hyperspectral remote sensing techniques provide a promising strategy for improving our understanding of air pollution. Satellite and ground based hyperspectral remote sensing techniques have been demonstrated to have unparalleled technical advantages in monitoring the horizontal and vertical distributions of air pollutants compared to other monitoring techniques. However, to unveil the complex evolutions and processes of the atmospheric environment, the current stereoscopic hyperspectral remote sensing techniques still face several technical bottlenecks, such as a limited temporal resolution in horizontal space, a limited stereoscopic spatial resolution, the limited types of trace gases, the impact of cloud coverage, and the difficulty in nighttime monitoring. The new technical requirements mainly include the following changes: (1) from horizontal and vertical to grid-stereoscopic monitoring; (2) from kilometer to meter resolutions; and (3) from once a day to full-time monitoring with a high temporal resolution. In this article, we systematically review the recent advances in satellite- and ground-based hyperspectral remote sensing techniques, including China's first hyperspectral satellite GF-5, hardware, algorithms, and applications. Moreover, we discuss the broad application prospects of the unmanned aerial vehicle hyperspectral remote sensing monitoring system, the active hyperspectral remote sensing monitoring system, and machine learning in air pollution monitoring in the future. We recommend using the expected multi-means joint hyperspectral stereoscopic remote sensing monitoring mode to assist the effective monitoring and regulation of air pollution in the future.
引用
收藏
页数:13
相关论文
共 158 条
[1]   Atmospheric products from the ozone monitoring instrument (OMI) [J].
Ahmad, SP ;
Levelt, PF ;
Bhartia, PK ;
Hilsenrath, E ;
Leppelmeier, GW ;
Johnson, JE .
EARTH OBSERVING SYSTEMS VIII, 2003, 5151 :619-630
[2]   ESTIMATION OF PM 2.5 VERTICAL DISTRIBUTION USING CUSTOMIZED UAV AND MOBILE SENSORS IN BRGY. UP CAMPUS, DILIMAN, QUEZON CITY [J].
Babaan, J. B. ;
Ballori, J. P. ;
Tamondong, A. M. ;
Ramos, R. V. ;
Ostrea, P. M. .
INTERNATIONAL CONFERENCE ON GEOMATIC & GEOSPATIAL TECHNOLOGY (GGT 2018): GEOSPATIAL AND DISASTER RISK MANAGEMENT, 2018, 42-4 (W9) :89-103
[3]   The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases [J].
Baidar, S. ;
Oetjen, H. ;
Coburn, S. ;
Dix, B. ;
Ortega, I. ;
Sinreich, R. ;
Volkamer, R. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2013, 6 (03) :719-739
[4]   Catalog of NOx emissions from point sources as derived from the divergence of the NO2 flux for TROPOMI [J].
Beirle, Steffen ;
Borger, Christian ;
Doerner, Steffen ;
Eskes, Henk ;
Kumar, Vinod ;
de Laat, Adrianus ;
Wagner, Thomas .
EARTH SYSTEM SCIENCE DATA, 2021, 13 (06) :2995-3012
[5]   Pinpointing nitrogen oxide emissions from space [J].
Beirle, Steffen ;
Borger, Christian ;
Doerner, Steffen ;
Li, Ang ;
Hu, Zhaokun ;
Liu, Fei ;
Wang, Yang ;
Wagner, Thomas .
SCIENCE ADVANCES, 2019, 5 (11)
[6]   The Mainz profile algorithm (MAPA) [J].
Beirle, Steffen ;
Doerner, Steffen ;
Donner, Sebastian ;
Remmers, Julia ;
Wang, Yang ;
Wagner, Thomas .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2019, 12 (03) :1785-1806
[7]   Megacity Emissions and Lifetimes of Nitrogen Oxides Probed from Space [J].
Beirle, Steffen ;
Boersma, K. Folkert ;
Platt, Ulrich ;
Lawrence, Mark G. ;
Wagner, Thomas .
SCIENCE, 2011, 333 (6050) :1737-1739
[8]  
Bigge K., 2021, EGU GEN ASSEMBLY C A
[9]   Near-real time retrieval of tropospheric NO2 from OMI [J].
Boersma, K. F. ;
Eskes, H. J. ;
Veefkind, J. P. ;
Brinksma, E. J. ;
Van der A, R. J. ;
Sneep, M. ;
van den Oord, G. H. J. ;
Levelt, P. F. ;
Stammes, P. ;
Gleason, J. F. ;
Bucsela, E. J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (08) :2103-2118
[10]   BOREAS - a new MAX-DOAS profile retrieval algorithm for aerosols and trace gases [J].
Boesch, Tim ;
Rozanov, Vladimir ;
Richter, Andreas ;
Peters, Enno ;
Rozanov, Alexei ;
Wittrock, Folkard ;
Merlaud, Alexis ;
Lampel, Johannes ;
Schmitt, Stefan ;
de Haij, Marijn ;
Berkhout, Stijn ;
Henzing, Bas ;
Apituley, Arnoud ;
den Hoed, Mirjam ;
Vonk, Jan ;
Tiefengraber, Martin ;
Mueller, Moritz ;
Burrows, John Philip .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (12) :6833-6859