Tuning the graphene work function by uniaxial strain

被引:31
作者
He, Xin [1 ]
Tang, Ning [1 ]
Sun, Xiaoxiao [1 ]
Gan, Lin [2 ]
Ke, Fen [1 ]
Wang, Tao [1 ]
Xu, Fujun [1 ]
Wang, Xinqiang [1 ,3 ]
Yang, Xuelin [1 ]
Ge, Weikun [4 ]
Shen, Bo [1 ,3 ]
机构
[1] Peking Univ, State Key Lab Artificial Microstruct & Mesoscop P, Beijing 100871, Peoples R China
[2] Huazhong Univ Sci & Technol, Coll Mat Sci & Engn, Wuhan 430074, Peoples R China
[3] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[4] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSPORT;
D O I
10.1063/1.4906995
中图分类号
O59 [应用物理学];
学科分类号
摘要
Forming good metal/graphene contact is of significance in making graphene devices, while tuning the graphene work function is a valid approach to decrease the contact barrier and then achieve electrodes with low contact resistance. A strain device has been fabricated to apply uniaxial strain to graphene grown by chemical vapor deposition method, and Kelvin probe force microscopy was used to measure the work function of the graphene under strain. The work function of the graphene is found to increase as strain increases. By applying a uniaxial strain of 7%, the work function can be adjusted as large as 0.161 eV. Such a result can be explained by strain induced increase of the density of states in graphene. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 35 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]   Effect of Domain Boundaries on the Raman Spectra of Mechanically Strained Graphene [J].
Bissett, Mark A. ;
Izumida, Wataru ;
Saito, Riichiro ;
Ago, Hiroki .
ACS NANO, 2012, 6 (11) :10229-10238
[3]   Direct Imaging of Charged Impurity Density in Common Graphene Substrates [J].
Burson, Kristen M. ;
Cullen, William G. ;
Adam, Shaffique ;
Dean, Cory R. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, Philip ;
Fuhrer, Michael S. .
NANO LETTERS, 2013, 13 (08) :3576-3580
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]   Effects of strain on electronic properties of graphene [J].
Choi, Seon-Myeong ;
Jhi, Seung-Hoon ;
Son, Young-Woo .
PHYSICAL REVIEW B, 2010, 81 (08)
[6]   Approaching ballistic transport in suspended graphene [J].
Du, Xu ;
Skachko, Ivan ;
Barker, Anthony ;
Andrei, Eva Y. .
NATURE NANOTECHNOLOGY, 2008, 3 (08) :491-495
[7]   Intrinsic ripples in graphene [J].
Fasolino, A. ;
Los, J. H. ;
Katsnelson, M. I. .
NATURE MATERIALS, 2007, 6 (11) :858-861
[8]   Strain dependent resistance in chemical vapor deposition grown graphene [J].
Fu, Xue-Wen ;
Liao, Zhi-Min ;
Zhou, Jian-Xin ;
Zhou, Yang-Bo ;
Wu, Han-Chun ;
Zhang, Rui ;
Jing, Guangyin ;
Xu, Jun ;
Wu, Xiaosong ;
Guo, Wanlin ;
Yu, Dapeng .
APPLIED PHYSICS LETTERS, 2011, 99 (21)
[9]   Reduction of metal contact resistance of graphene devices via CO2 cluster cleaning [J].
Gahng, Sarang ;
Ra, Chang Ho ;
Cho, Yu Jin ;
Kim, Jang Ah ;
Kim, Taesung ;
Yoo, Won Jong .
APPLIED PHYSICS LETTERS, 2014, 104 (22)
[10]   Turning off Hydrogen To Realize Seeded Growth of Subcentimeter Single-Crystal Graphene Grains on Copper [J].
Gan, Lin ;
Luo, Zhengtang .
ACS NANO, 2013, 7 (10) :9480-9488