RELATIONS BETWEEN BIPARTITE ENTANGLEMENT MEASURES

被引:0
作者
Schwaiger, Katharina [1 ]
Kraus, Barbara [1 ]
机构
[1] Univ Innsbruck, Inst Theoret Phys, Technikerstr 21a, Innsbruck, Austria
基金
奥地利科学基金会;
关键词
Pure bipartite entanglement; Positivstellensatz; QUANTUM ENTANGLEMENT; PURE STATES;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate the entanglement of bipartite systems from an operational point of view. Main emphasis is put on bipartite pure states in the single copy regime. First, we present an operational characterization of bipartite pure state entanglement, viewing the state as a multipartite state. Then, we investigate the properties and relations of two classes of operational bipartite and multipartite entanglement measures, the so-called source and the accessible entanglement. The former measures how easy it is to generate a given state via local operations and classical communication (LOCC) from some other state, whereas the latter measures the potentiality of a state to be convertible to other states via LOCC. We investigate which parameter regime is physically available, i.e. for which values of these measures does there exist a bipartite pure state. Moreover, we determine, given some state, which parameter regime can be accessed by it and from which parameter regime it can be accessed. We show that this regime can be determined analytically using the Positivstellensatz. We compute the boundaries of these sets and the boundaries of the corresponding source and accessible sets. Furthermore, we relate these results to other entanglement measures and compare their behaviors.
引用
收藏
页码:85 / 113
页数:29
相关论文
共 27 条
  • [1] EXPLICIT COMPUTATIONS WITH THE DIVIDED SYMMETRIZATION OPERATOR
    Amdeberhan, Tewodros
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (07) : 2799 - 2810
  • [2] Concentrating partial entanglement by local operations
    Bennett, CH
    Bernstein, HJ
    Popescu, S
    Schumacher, B
    [J]. PHYSICAL REVIEW A, 1996, 53 (04): : 2046 - 2052
  • [3] Bounds on general entropy measures
    Berry, DW
    Sanders, BC
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (49): : 12255 - 12265
  • [4] Entanglement monotones for W-type states
    Chitambar, Eric
    Cui, Wei
    Lo, Hoi-Kwong
    [J]. PHYSICAL REVIEW A, 2012, 85 (06):
  • [5] Distributed entanglement
    Coffman, V
    Kundu, J
    Wootters, WK
    [J]. PHYSICAL REVIEW A, 2000, 61 (05): : 5
  • [6] Evolution and Symmetry of Multipartite Entanglement
    Gour, Gilad
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (19)
  • [7] Most Quantum States Are Too Entangled To Be Useful As Computational Resources
    Gross, D.
    Flammia, S. T.
    Eisert, J.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (19)
  • [8] An area law for one-dimensional quantum systems
    Hastings, M. B.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
  • [9] Hilbert D., 1888, MATH ANN, V32, P342, DOI DOI 10.1007/BF01443605
  • [10] Quantum entanglement
    Horodecki, Ryszard
    Horodecki, Pawel
    Horodecki, Michal
    Horodecki, Karol
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (02) : 865 - 942