Intelligent scheduling and reconfiguration via deep reinforcement learning in smart manufacturing

被引:43
|
作者
Yang, Shengluo [1 ,2 ,3 ,4 ]
Xu, Zhigang [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, Shenyang, Peoples R China
[2] Chinese Acad Sci, Inst Robot, Shenyang, Peoples R China
[3] Inst Intelligent Mfg, Shenyang, Peoples R China
[4] Univ Chinese Acad Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep reinforcement learning; dynamic scheduling and reconfiguration; A2C; reconfigurable manufacturing system (RMS); intelligent scheduling; dynamic job arrival; ITERATED GREEDY ALGORITHM; PERMUTATION FLOW-SHOP; TOTAL TARDINESS; OPTIMIZATION; MINIMIZATION; HEURISTICS; EARLINESS;
D O I
10.1080/00207543.2021.1943037
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To realise the intelligent decision-making of dynamic scheduling and reconfiguration, we studied the intelligent scheduling and reconfiguration with dynamic job arrival for a reconfigurable flow line (RFL) using deep reinforcement learning (DRL), for the first time. The system architecture of intelligent scheduling and reconfiguration in smart manufacturing is proposed, and the mathematical model is established to minimise total tardiness cost. In addition, a DRL system of scheduling and reconfiguration is proposed by designing state features, actions, and rewards for scheduling and reconfiguration agents. Moreover, the advantage actor-critic (A2C) is adapted to solve the studied problem. The training curve shows the A2C-based agents have effectively learned to generate better solutions for unseen instances. The test results show that the A2C-based approach outperforms two traditional meta-heuristics, iterated greedy (IG) and genetic algorithm (GA), in solution quality and CPU times by a large margin. Specifically, the A2C-based approach outperforms IG and GA by 57.43% and 88.30%, using only 0.46 parts per thousand and 2.20 parts per thousand CPU times of IG and GA. The trained model can generate a scheduling or reconfiguration decision within 1.47 ms, which is almost instantaneous and can satisfy real-time optimisation. Our work shows a promising prospect of using DRL for intelligent scheduling and reconfiguration.
引用
收藏
页码:4936 / 4953
页数:18
相关论文
共 50 条
  • [41] A Deep Reinforcement Learning Approach for Smart Coordination Between Production Planning and Scheduling
    Gomez-Gasquet, Pedro
    Boza, Andres
    Perez Perales, David
    Esteso, Ana
    ENTERPRISE INTEROPERABILITY X, EI 2022, 2024, 11 : 195 - 206
  • [42] Reinforcement learning for online optimization of job-shop scheduling in a smart manufacturing factory
    Zhou, Tong
    Zhu, Haihua
    Tang, Dunbing
    Liu, Changchun
    Cai, Qixiang
    Shi, Wei
    Gui, Yong
    ADVANCES IN MECHANICAL ENGINEERING, 2022, 14 (03)
  • [43] Learn to chill - Intelligent Chiller Scheduling using Meta-learning and Deep Reinforcement Learning
    Manoharan, Praveen
    Venkat, Malini Pooni
    Nagarathinam, Srinarayana
    Vasan, Arunchandar
    BUILDSYS'21: PROCEEDINGS OF THE 2021 ACM INTERNATIONAL CONFERENCE ON SYSTEMS FOR ENERGY-EFFICIENT BUILT ENVIRONMENTS, 2021, : 21 - 30
  • [44] Research on Modeling and Scheduling Methods of an Intelligent Manufacturing System Based on Deep Learning
    Lan, Xiaoyi
    Chen, Hua
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
  • [45] Intelligent Control for Unmanned Flight Vehicles via Deep Reinforcement Learning
    Cheng, Haoyu
    Zhang, Xiaofeng
    Huang, Hanqiao
    Zhao, Xiaohan
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 3184 - 3189
  • [46] Intelligent H∞ Control for UAVs via Fuzzy Deep Reinforcement Learning
    Cheng, Haoyu
    Wang, Meng
    Ma, Yifeng
    Jiao, Jiayue
    Song, Ruijia
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 7182 - 7187
  • [47] Solving job shop scheduling problems via deep reinforcement learning
    Yuan, Erdong
    Cheng, Shuli
    Wang, Liejun
    Song, Shiji
    Wu, Fang
    APPLIED SOFT COMPUTING, 2023, 143
  • [48] Scheduling Algorithm for Raw Material Transportation Via Deep Reinforcement Learning
    Zhang, Yi
    Chen, Yang-Yang
    Zhang, Faxiang
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 2218 - 2223
  • [49] An Intelligent Task Scheduling Mechanism for Autonomous Vehicles via Deep Learning
    Balasekaran, Gomatheeshwari
    Jayakumar, Selvakumar
    Perez de Prado, Rocio
    ENERGIES, 2021, 14 (06)
  • [50] Deep Reinforcement Learning for Intelligent Communications
    Tan J.-J.
    Liang Y.-C.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2020, 49 (02): : 169 - 181