Machine learning-aided engineering of hydrolases for PET depolymerization

被引:420
|
作者
Lu, Hongyuan [1 ]
Diaz, Daniel J. [2 ]
Czarnecki, Natalie J. [1 ]
Zhu, Congzhi [1 ]
Kim, Wantae [1 ]
Shroff, Raghav [3 ,4 ]
Acosta, Daniel J. [3 ]
Alexander, Bradley R. [3 ]
Cole, Hannah O. [1 ,3 ]
Zhang, Yan [3 ]
Lynd, Nathaniel A. [1 ]
Ellington, Andrew D. [3 ]
Alper, Hal S. [1 ]
机构
[1] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA
[3] Univ Texas Austin, Dept Mol Biosci, Austin, TX 78712 USA
[4] DEVCOM ARL South, Austin, TX USA
基金
美国国家卫生研究院;
关键词
PLASTICS;
D O I
10.1038/s41586-022-04599-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Plastic waste poses an ecological challenge(1-3) and enzymatic degradation offers one, potentiallygreen and scalable, route for polyesters waste recycling(4). Poly(ethylene terephthalate) (PET) accounts for 12% of global solid waste(5), and a circular carbon economy for PET istheoretically attainable through rapid enzymatic depolymerization followed by repolymerization or conversion/valorization into other products(6-10). Application of PET hydrolases, however, has been hampered by their lack of robustness to pH and temperature ranges, slow reaction rates and inability to directly use untreated postconsumer plastics(11). Here, we use a structure-based, machine learning algorithm to engineer a robust and active PET hydrolase. Our mutant and scaffold combination (FAST-PETase: functional, active, stable and tolerant PETase) contains five mutations compared to wild-type PETase (N233K/R224Q/S121E from prediction and D186H/R280A from scaffold) and shows superior PET-hydrolytic activity relative to both wild-type and engineered alternatives(12) between 30 and 50 degrees C and a range of pH levels. We demonstrate that untreated, postconsumer-PET from 51 different thermoformed products can all be almost completely degraded by FAST-PETase in 1 week. FAST-PETase can also depolymerize untreated, amorphous portions of a commercial water bottle and an entire thermally pretreated water bottle at 50 degrees C. Finally, we demonstrate a closed-loop PET recycling process by using FAST-PETase and resynthesizing PET from the recovered monomers. Collectively, our results demonstrate a viable route for enzymatic plastic recycling at the industrial scale.
引用
收藏
页码:662 / +
页数:23
相关论文
共 50 条
  • [1] Machine learning-aided engineering of hydrolases for PET depolymerization
    Hongyuan Lu
    Daniel J. Diaz
    Natalie J. Czarnecki
    Congzhi Zhu
    Wantae Kim
    Raghav Shroff
    Daniel J. Acosta
    Bradley R. Alexander
    Hannah O. Cole
    Yan Zhang
    Nathaniel A. Lynd
    Andrew D. Ellington
    Hal S. Alper
    Nature, 2022, 604 : 662 - 667
  • [2] Biosensor and machine learning-aided engineering of an amaryllidaceae enzyme
    d'Oelsnitz, Simon
    Diaz, Daniel J.
    Kim, Wantae
    Acosta, Daniel J.
    Dangerfield, Tyler L.
    Schechter, Mason W.
    Minus, Matthew B.
    Howard, James R.
    Do, Hannah
    Loy, James M.
    Alper, Hal S.
    Zhang, Y. Jessie
    Ellington, Andrew D.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [3] Machine Learning-Aided Exploration of Ultrahard Materials
    Tawfik, Sherif Abdulkader
    Nguyen, Phuoc
    Tran, Truyen
    Walsh, Tiffany R.
    Venkatesh, Svetha
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (37): : 15952 - 15961
  • [4] Machine learning-aided generative molecular design
    Du, Yuanqi
    Jamasb, Arian R.
    Guo, Jeff
    Fu, Tianfan
    Harris, Charles
    Wang, Yingheng
    Duan, Chenru
    Lio, Pietro
    Schwaller, Philippe
    Blundell, Tom L.
    NATURE MACHINE INTELLIGENCE, 2024, 6 (06) : 589 - 604
  • [5] Adversarial attacks on machine learning-aided visualizations
    Fujiwara, Takanori
    Kucher, Kostiantyn
    Wang, Junpeng
    Martins, Rafael M.
    Kerren, Andreas
    Ynnerman, Anders
    JOURNAL OF VISUALIZATION, 2025, 28 (01) : 133 - 151
  • [6] Machine learning-aided LiDAR range estimation
    Bastos, Daniel
    Faria, Bruno
    Monteiro, Paulo P.
    Oliveira, Arnaldo S. R.
    Drummond, Miguel, V
    OPTICS LETTERS, 2023, 48 (07) : 1962 - 1965
  • [7] Dynamic Docking-Assisted Engineering of Hydrolases for Efficient PET Depolymerization
    Zheng, Yi
    Li, Qingbin
    Liu, Pan
    Yuan, Yingbo
    Dian, Longyang
    Wang, Qian
    Liang, Quanfeng
    Su, Tianyuan
    Qi, Qingsheng
    ACS CATALYSIS, 2024, 14 (05) : 3627 - 3639
  • [8] Machine Learning-Aided Band Gap Engineering of BaZrS3 Chalcogenide Perovskite
    Sharma, Shyam
    Ward, Zachary D.
    Bhimani, Kevin
    Sharma, Mukul
    Quinton, Joshua
    Rhone, Trevor David
    Shi, Su -Fei
    Terrones, Humberto
    Koratkar, Nikhil
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (15) : 18962 - 18972
  • [9] Machine learning-aided design optimization of a mechanical micromixer
    Granados-Ortiz, F-J
    Ortega-Casanova, J.
    PHYSICS OF FLUIDS, 2021, 33 (06)
  • [10] Machine Learning-Aided Sparse Direction of Arrival Estimation
    Raiguru, Priyadarshini
    Kumar Rout, Susanta
    Sahani, Mrutyunjaya
    Mishra, Rabindra Kishore
    IEEE SENSORS JOURNAL, 2024, 24 (22) : 38125 - 38134